

Performance of the Advanced Photon Source 350-MHz 1MW CW Klystrons

A U.S. Department of Energy laboratory managed by The University of Chicago

Doug Horan
RF Group
Accelerator Systems Division
CWRF08 Workshop
March 25-28,2008

PRESENTATION OUTLINE

- 1. Review of APS 350-MHz RF System Topology
- 2. APS 350-MHz RF System Operation
- 3. APS 350-MHz Klystron Inventory
- 4. APS 350-MHz Klystron Operation 2006-2008
- 5. Klystron Problems and Corrective Action

APS 350-MHz RF System Topology

- 7GeV Booster-Synchrotron
- Electron Storage Ring capable of 300mA
- Five 350-MHz/1.1MW CW rf systems:
 - → four dedicated to Storage-Ring service (RF1, RF2, RF3, RF4)
 - → one dedicated to Booster-Synchrotron service (RF5)
- A waveguide switch system provides 12 different operating modes:
 - → Parallel-klystron configuration necessary for Storage-Ring currents greater than 150mA
 - → RF3 redundancy for RF5 (Booster-Synchrotron)
 - → Ability for RF1 to supply rf power for the 350MHz RF Test Stand

APS 350-MHz RF System Topology

7GeV BOOSTER

four 5-cell cavities,
 grouped in pairs

STORAGE RING

-16 single-cell rf cavities, grouped in four sectors

APS 350-MHz Klystron Installation

Al/Pb/Al "GARAGE"X-RAY SHIELD

- Movable half-shell for full access to klystron
- Fixed half-shell fitted with two hinged doors to provide access for cavity tuning
- X-ray levels normally less than 2mr at one foot from garage

APS 350-MHz RF System Operating Levels

Normal Storage Ring operation is 103mA in "Top-Up" Mode

- -- Requires two rf stations (RF1-RF4) operating at 600-700kW CW rf output, depending on gap voltage required
- -- Beam voltage set to 80kV (where possible!) to improve operating efficiency
- -- RF drive power as high as possible for highest efficiency (~ 50-52%), limited by klystron stability issues

Normal Booster-Synchrotron operation at 7GeV

- -- Requires one rf station (RF3 or RF5) operating at 400-500kW peak rf power, depending on gap voltage required
- -- 253ms ramp from 5kW to 420kW, at 2Hz rate
- -- Klystron operating class A, ramped rf drive, 68kV@~12.5A.

APS 350-MHz RF System Operating Levels

- Klystron control screen
 for RF3 *EEV s/n 01*
- Efficiency lower than
 50% due to low rf power requirement (reduced storage ring gap voltage)
- Approximately 330kW rf required with no SR beam
- RF power is controlled by an AGC loop that varies mod-anode voltage in response to storage ring beam loading

APS 350-MHz RF System "Hot Standby" Mode

- RF stations not providing rf power to the storage ring or 350-MHz RF Test Stand are operated in "diode mode" (no RF) at 70kV/5A
 - -- RF stations are routinely switched in/out of standby mode approximately every 30 days
 - -- Maintains gun conditioning and vacuum in klystron
 - -- Maintains HVPS crowbar conditioning and general reliability
 - -- Ok with all klystrons except Thales s/n 089041; a problem with excessive body power dissipation requires 70kV/6.2A diode operation.

APS 350-MHz Klystron Inventory

- Total of ten klystrons tuned to APS RF Frequency 351.93MHz
 - → Present Five Operating Klystrons:
 - -- Three Thales TH2089A, two EEV K3513A
 - → Five Spare Klystrons:
 - -- All Thales TH2089A.....one new, four rebuilt
- One Philips YK1350 klystron tuned to 352.21MHz
 - → Less than 500 hours of operation
 - → Recently tested into rf load to full 1MW CW after ten years of storage
 - → Under consideration for retuning to APS frequency

APS 350-MHz Operating Klystrons

EEV K3513A s/n 02

- Presently in service at RF1
- **59,014 hours** as of March 13, 2008
- No operational problems noted; <u>absolutely trouble free!</u>

- Presently in service at RF2
- **43,976 hours** as of March 13, 2008
- Ongoing unresolved problems with excessive x-ray emissions and high body power
- Sideband instabilities suppressed by careful adjustment of circulator bias; <u>very sensitive to output match</u>
- Reduced efficiency by ~ 2% to achieve stability!
- Suspected input cavity electron instability which causes erratic rf output between 300-400kW

APS 350-MHz Operating Klystrons

EEV K3513A s/n 01

- Presently in service at RF3
- **42,478 hours** as of March 13, 2008
- No operational problems noted; <u>absolutely trouble free!</u>

Thales TH2089A s/n 089030

- Presently in service at RF4
- Refurbished and factory acceptance tested on 10/31/2000
- Installed at RF4 on 11/15/05
- **15,774 hours** as of March 13, 2008
- No serious problems, but can become unstable.

- Presently in service at RF5 (Booster-Synchrotron)
- **33,881 hours** as of March 13, 2008
- No operational problems noted

APS 350-MHz Spare Klystrons

Thales TH2089A s/n 089043

- Last NEW klystron purchased, delivered to APS on 12/5/01
- Presently in spares storage

Thales TH2089A s/n 089036

- Refurbished; factory acceptance tested on 12/13/02
- Presently in spares storage

- Refurbished; factory acceptance tested on 12/8/03
- Presently in spares storage

APS 350-MHz Klystron Inventory

Thales TH2089A s/n 089024

- Refurbished; factory acceptance tested on 8/30/04
- Presently in spares storage

- Removed from service at RF4 on 11/15/05 at 52,720 hours
- Shipped to Thales on 3/30/06
- Thales factory refurbishment and factory acceptance test completed on 2/6/07
- Delivered to APS on 3/20/08, and passed gas test on 3/21/08
- Presently in spares storage

Klystron Operational Record 2006-2008

- No klystron-related downtime during this period!
 - → Klystron issues (arcing, instabilities) were originally suspected in some beam losses, but further investigation proved otherwise!
 - → 350-Mhz klystron performance contributed to the outstanding overall reliability from the APS rf systems:

	% DOWNTIME	MEAN TIME TO FAULT
• FY 2006	0.84%	195.0hr
• FY 2007	0.39%	339.3hr

But there were some klystron problems.....

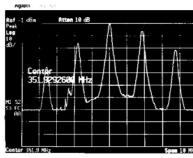
Pantak Socket Problems

- → cracked sockets
 - -- over-tightening?
- → broken or distorted contact springs
 - -- caused several cases of intermittent heater current
- → oil seepage into socket
 -- causes swelling of cable plug, loss of cable (~ \$6K!!)

WHITE PANTAK SOCKETS CAN BREAK!

More attention to proper maintenance has reduced these failures

- Excessive x-ray emissions from RF2 klystron garage – Thales s/n 089041
 - → Routine Health Physics monitoring indicated ~ 7-25mr at mid-point of garage (same region of klystron where drift tube melted in 1999)
 - → Excessive Body1 power dissipation (~9-15kW!)
 - → <u>Ongoing problem</u>.....many attempts by Thales to resolve problem


Supplemental lead shielding added to garage!

Sideband instabilities

- → Can cause sudden beam losses and are hard to diagnose
- → Only seen on Thales klystrons
 - s/n 089041 particularly bad
- → Best remedy is to adjust circulator bias for additional reflected power on the lowefficiency side of the curve
 - sacrifice ~ 1-2% efficiency

Typical klystron sidebands $\pm \sim 1.8$ MHz from carrier

- Unstable rf output due to suspected electron instabilities
 - → multipactor in 1st or 2nd cavity suspected
 - → severe ~ 800kHz sidebands
 - → kept under control by determining a stable range for rf drive power
 - Thales s/n 089041 particularly bad......only stable between 42-46 watts of rf drive power!

- Arcing in ion pump connector -- EEV s/n 01
 - → Dirty connector ????
 - → Did not result in downtime (auxiliary noninterlocked ion pump)

- Output window arc detector trip on RF1
 - -- EEV s/n 02
 - → Only one arc event (appeared to be a real arc)
 - → Ran klystron into load at ~ 700-800kW for four hours with no problems
 - → Placed back into SR service with no further problems for over a year

APS 350-MHz Klystron Maintenance

- Adjust the rf system for best possible stability and performancethen leave the klystron alone if it is happy!
- Weekly analysis of operating parameters
 - → Watch for changes in efficiency, body losses, mod-anode current, perveance
- Monitor and alarm on klystron sideband instabilities
- Thorough visual inspection of klystron every shutdown, including Pantak plugs and sockets
- Check oil quality every shutdown (30kV or greater breakdown)

APS 350-MHz Klystron Maintenance

 Perform emission checks every 7000 hours at nominal operating point.

→ Running the cathode hotter than necessary can cause many types of chronic problems!

APS 350-MHz Klystron Maintenance

- "Spotknock" the klystron gun at least once every two years.....and whenever your crowbar fires excessively!
 - → A very valuable test!
 - → Helps find the real cause
 of crowbar events......
 it may not be the klystron!

