Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

RF Power improvement of AlGaN/GaN based HFETs and MOSHFETs

A. Fox, M. Marso

CWRF2008 CERN

CWRF2008

Research Center Juelich?

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Where:

» between Cologne>>>>Aachen

areas of research : » *M* aterial » *E* nvironment » *I* nformation » *L* ife » *E* nergie

» Established more than 50 years

Outline

Application example

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

AlGaN/GaN HFETs are used in rf-generators, telecommunication and other applications where power devices at higher frequencies, voltages and temperatures are needed.

AlGaN/GaN Heterostructure and 2DEG

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

heterostructure is the layer system with different band gap material e.g. with AlGaN grown on GaN.

This 2DEG "charge plate" creates the area with very high mobility and sheet concentration of carriers

 \longrightarrow <u>High Electron Mobility Transistor</u>

Ohmic contacts are controlled by the Schottky Gate conntact

Formation of 2DEG in AlGaN/GaN heterostructure

5

Example I-V characteristic $V_{g} = 0.7$ Max. or $V_{g} = 0$ $P_{out} = I_{max} * (t)$ I_{DS} $V_{g} = -1$ I_{max} inc increase and veloc V_{knee} V_{DS} $V_{breakdown}$ $V_{breakdown}$

Max. output power: $f(I_{ds}, V_{ds})$ $P_{out} = I_{max} * (V_{breakdown} - V_{knee}) / 8$

> I_{max} increases due to increase carrier density and velocity

V_{breakdown} increases e.g. -with fieldplate technology -wide bandgap

Opt. $R_L = (V_b - V_s)/I_{max}$

for increasing P_{out} an output voltage- and current increase is needed

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

How do the DC measures translate into device geometry and material properties?

Drain Current (I_{ds})

Transconductance (g_m)

absolute charge underneath the gate equals charge in active region of 2DEG: $qnL_GW = \varepsilon_0\varepsilon_r \frac{L_GW}{h}V_{gs}$ insertion of expression into saturated current formula... $I_d = qnvW$...yields: $I_d = \varepsilon_0\varepsilon_r \frac{W}{h}vV_{ds}$ differentiation yields intrinsic transconductance

(robertson2001a)

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Important for high output power:

- high breakdown field and voltage, i.e. wide bandgap -high thermal conductivity Important for high f_T and f_{max} :

Fast carriers (i.e. μ_0 , v_{peak} , v_{sat})

Frank Schwierz Fachgebiet Festkörperelektronik, Technische Universität Ilmenau, Germany

	Si	GaAs	InGaAs *	4H SiC	6H SiC	GaN
$E_{\rm G}$, eV	1.1	1.4	0.7	3.2	3	3.4
$E_{\rm BR}, 10^5 {\rm V/cm}$	5.7	6.4	4	33	30	40
μ_0 , cm ² /Vs	710	4700	7000	610	340	680
v_{peak} , 10 ⁷ cm/s	1	2	2.5-3	2	2	2.5
$v_{\rm sat}$, $10^7 {\rm cm/s}$	1	0.8	0.7	2	2	1.5-2
<i>к</i> , W/cm-K	1.3	0.5	0.05	2.9	2.9	1.2

8

HFET performance improvement

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

degradation of dc and transport properties due to long *S_D* distance

*Juraj Bernat "Fabrication and characterisation of AlGaN HEMT" (Diss `2005@RWTH Aachen)

Enlarging of the Source - Drain distance is limited

HFET performance improvement

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Fieldplate technology:

➡ Known since 1969 on Si

- ➡ Higher breakdown voltage
- Different electric field distribution between Gate and Drain

*Juraj Bernat "Fabrication and characterisation of AlGaN HEMT" (Diss `2005@RWTH Aachen)

Performance improved by Fieldplate technology on AlGaN-HEMT

Fieldplate Technology - Results

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Simulation: by ATLAS, Silvaco *Juraj Bernat "Fabrication and characterisation of AlGaN HEMT" (Diss `2005@RWTH Aachen)

<u>Confirmed by:</u> A. Koudymov, IEEE Electr. Device L. 26, Oct. 2005

Increase of the output power is due to modification of the electric field on GaN cap

Experiment

- Simultaneous fabrication of unpassivated & passivated SiC/GaN/AlGaN HFETs and MOSHFETs:
- 10 nm SiO₂ layer for passivated HFETs and MOSHFETs (PECVD),
- $L_G = 0.3-0.9 \ \mu m$, $L_W = 200 \ \mu m$ (2-fingers),

[→]Gero Heidelberger: Technology related issues regarding fabrication

CWRF2008 13

HFET- technology

- Mesa etching
 - ECR RIE or Ar⁺ sputter
 - Depth: 250 ~ 300 nm
- Ohmic contacts
 - Ti/Al/Ni/Au
 - Annealing: 850°C, 30sec
- Schottky contacts
 - Ni/Au
- Pads
 - Ti/Au

Fabrication of our HFET Devices

in der Helmholtz-Gemeinschaft

<u>Hetero Field Effect Transistor</u>

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

HFET Layout

SEM picture of AlGaN/GaN HFET wg=200 µm Lg=0.3 µm

SEM picture of AlGaN/GaN HFET with airbridge technology >> increasing I_{max}

Detailed view of HFET Device as fabricated in our lab prepared for on-wafer measurements with 100 µm pitch

Outline

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

15

- Important for microwave design and characterization
- Basics for parameter extraction and simulation
- Our measurement system:
 - Frequency up to 110 GHz
 - Network Analyzer
 - On wafer measurements
 - Control System and Calibration (LRM)

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

We are well prepared for high quality s-parameter measurements

Results of S-parameter measurements

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

drain source voltage: 20V gate length: 500 nm SiO₂ layer thickness: 10nm

cut off frequency (f_t) is the frequency where current gain $h_{21}=0$ [db]

MOSHFETs show significantly higher cut off frequencies

Variation of f_t vs. gate length

Higher cut-off frequencies (f_t) are observed for MOSHFETs for all kinds of gate lengths. f_t increases with decreasing gate lengths.

Outline

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Load Pull Measurement System

CWRF2008 21

Focus Microwave

RF-Power measurement system

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Large signal measurements were performed on wafer at 7 GHz by source and load pull measurements

Load pull measurement

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Power performance will increase with further increase of $V_{\rm ds}$ for passivated HFET

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Comparison of P_{out} for HFET and MOSHFET with different SiO₂ dielectric layer @ 7 GHz

Performance improvement by optimising the dielectric layer thickness

The RF output power increases from 2.9 W/mm (HFET) to 6.7 W/mm (MOSHFET) with no fieldplate implemented

Outline

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Equivalent circuit for the AlGaN/GaN MOSHFET

 C_{gs} and g_m change with the dielectric layer

Extracted Parameters C_{gs}, g_m

 v_{sat} increases with passivation

 C_{gs} decreases for MOSHFETs due to additional SiO₂ layer

Modelling

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

 $f_t = f(g_m/C_{gs})$

Comparison of g_m/C_{gs} ratio

 g_m/C_{gs} is in agreement with the increase of cut off frequency from h_{21} for the MOSHFET compared to HFET

Modelling

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Good agreement between measurement and optimized model

Outline

DC analysis: Results

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

1

S-parameter analysis

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

CWRF2008 34

S-parameter analysis

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Comparison of Transistor Scattering Parameters

Outline

- Specifying and generating desired load and source reflection coefficients (impedance)
- Biasing the device and running a simulation
- Calculating desired responses (delivered power, PAE, etc.)

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Load pull simulation varies the load reflection coefficient presented to a device...

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

This data shows the simulation results when the reflection coefficient is the value selected by the marker's location.

...to find the optimal value to maximize power or PAE, etc.

Outline

Comparison of simulated and measured PAE

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Curves are acceptable between measurement and simulation of PAE

Comparison of simulated and measured output power

MOSHFET, SiO₂ thickness: 10nm

Good agreement between measurement and simulation of P_{out}

Conclusion

• Increase of RF-performance by introduction of the MOSHFET-technology.

- MOS-HFET superior to unpassivated and passivated HFET regarding DC-, RF-, and power-performance.

- Increase of output power, PAE and cut-off frequency.
- Simulations verify the measured large signal results.
- Further work: alternative dielectric material and additional fieldplate implementation

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Thank you!

CWRF2008 45

ENDE Vortrag

RF-Power measurement (Load-Pull)

Comparison of RF-Power performance for passivated HFET and MOSHFET

MOSHFETs show significantly higher output Power and PAE

Non linear circuit simulation results in P_{out} and PAE of the DUT

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Load pull simulation varies the load reflection coefficient presented to a device...

... to find the optimal value to maximize output-power

Modeling

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

From physical structure to equivalent circuit

CV-measurement

Modeling

Output Power

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

increased output power by increasing Id and Ud

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

MOSHFET using 11nm thick SiO₂ gate isolation:

- 30% increase of the drain saturation current
- Reduction of gate leakage current from 10⁻⁶ to 10⁻¹⁰ A/mm

*Juraj Bernat "Fabrication and characterisation of AlGaN HEMT" (Diss `2005@RWTH Aachen)

Wide bandgap semiconductors

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

56

Common semiconductors $E_{\rm G}$ around 1 eV Si $E_{\rm G} = 1.1 \, {\rm eV}$ GaAs $E_{G} = 1.4 \text{ eV}$ Wide bandgap semiconductors $E_{\rm G}$ > 2 eV 4H SiC $E_{G} = 3.2 \text{ eV}$ 6H SiC $E_{\rm G} = 3.0 \, {\rm eV}$ GaN $E_{\rm G} = 3.4 \, {\rm eV}$ AIN $E_{\rm G} = 6.1 \, {\rm eV}$ AlGaN $E_{G} = 3.4 \dots 6.1 \text{ eV}$ C $E_{G} = 5.5 \text{ eV}$ Narrow bandgap semiconductors *E*_G << 1 eV InAs $E_{\rm G} = 0.35 \, {\rm eV}$ InSb $E_{G} = 0.17 \text{ eV}$ **CWRF2008**

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Cree, Inc : Pout= 32.2 W/mm, PAE= 54,8%, Fe_doped and Field plate GaN HEMT @10GHz Pout=4.1W/mm, PAE=72%

Heterostructure and 2DEG

Forschungszentrum Jülich

A heterostructure is the layer system where two semiconductors with different band gaps Eg are grown one on the other

In the thermodynamical equilibrium, when both semiconductors are "connected" together, the Fermi-level energy (EF) of the Semiconductor I and Semiconductor II must be in the line what cause the discontinuity in the conductance (EC) and valence (EV) band and the band bending. This results in the formation of the triangular quantum well where carriers are fixed in one axis and the 2DEG is formed.