Development of a High Power Test System for New Power Grid Tubes for 200 MHz

John T. M. Lyles
Los Alamos Neutron Science Center
Los Alamos, New Mexico

Outline

- Planned Upgrade to LANSCE DTL RF Plant
- New Power Amplifiers, FPA and IPA
- Development of Test Facility for Amplifiers
 - Reuse of LEDA Facility
 - Anode High Voltage Power
 - Filament, Screen and Control Grid Power
 - Solid State Driver Stage
 - RF Water Load
 - Circulator Test

LANSCE Drift Tube Linac

First 60 meters of the 760 meter LANSCE linac

4 Post Coupler-Stabilized Alvarez tanks

Designed and installed in 1967-1968

H⁺ and H⁻ Protons accelerated from 0.75 to 100 MeV

Beam Transferred to room temp CCL at β = 0.428

DTL receives 201.25 MHz pulsed RF power through 35.5 cm coaxial transmission lines from 4 RF system

DTL RF Power Limitations

- DTL formerly accelerated 17 mA peak H⁺ (LAMPF)
- Presently operating about 11-13 mA of H⁺ and H⁻
- RF duty factor as high as 12% to handle all beams
- Final power amplifier triode (7835) sometimes operating at 90% of its "safe" anode dissipation limit
 - Impossible to operate with higher peak current with such average power, especially for the second DTL tank (longest)
 - RF system is unable to provide adequate power for future LANSCE programs, without significant engineering improvements
- Replacement system being developed, tested, for installation 2011-15

Future RF Power Requirements

All Peak Powers in Megawatts

DTL Tank	Energy gair	n P _{Cu}	P _{Cu+16.5 mA}	P _{Cu+21 mA}	Goal
1	4.64 MeV	0.38	0.46	0.48	0.5
2	35.94 MeV	2.72	3.31	3.47	3.6
3	31.39 MeV	2.09	2.61	2.75	2.9
4	27.28 MeV	2.49	2.94	3.07	3.2

Tank 2 needs the highest power, and the present final power amplifier (FPA) typically has highest downtime from tube problems

New DTL 1 Amplifier Chain

New DTL 2 Amplifier Chain

New DTL 3 & 4 RF Amplifier Chain

Burle 7835 Triode Thales TH628 Diacrode

Double-Ended RF Circuit

- •Burle (RCA) 7835 triode and Thales TH628 Diacrode are both double-ended tubes
- •Require a "slave" cavity on one end (top) of both the input and output terminals of tube*
- Main tuning short at opposite end of tube (bottom)
- •Forces TEM voltage standing-wave maximum, centered at active electron region inside tube
- •In a typical case in which the active region is 45° long, the voltage varies only 8% over the length of active region rather than 36% for conventional tubes
- •Max current density in one end of conventional tubes creates high i²r dissipation, usually worse in screen grid. This often limits the power capabilities of large power grid tubes at VHF.

Fig. 1.—Simple longitudinal cross-section of the output circuit for triode: (a) in 'single-ended' arrangement; (b) in 'double-ended' arrangement.

Source: Hoover, "Advances in the Techniques and Applications of Very High Power Grid-Controlled Tubes", IEE, Nov. 1958

TH628 s/n A04 tested in Thonon les Bains 1998

Peak power output	3 MW peak		
•Average power	600 kW		
•RF pulse duty cycle	20%		
•DC-to-RF efficiency	>60%		
•DC plate voltage	26 kV		
•Screen (G ₂) voltage	1.6 kV		
•RF power gain	>14 dB		
•Zero drive stability	to >1 GHz		

Re-tested Dec. 2007 in Thonon les Bains

Now Rated for 3.2 MW 15% DF

FPA Development at Los Alamos

Field Calculations from Superfish

Improved Output Resonator, with Capacitiye Output Coupler (2006)

Intermediate Power Amplifier

- Needed as a driver for the TH628 Final Power Amplifiers
- Thales TH781 tetrode selected, due to increasing popularity in many applications, and ability to operate at high DF
- Burle 4616 is also capable, but our amplifiers require renewal, 40 years old
- DTL 1 won't require this; it will use 25 kW solid state PA

TH781 in Thales Cavity Amplifier

IPA Tested at Los Alamos

Original using AC Filament Transformer

DC Filament Power Supply

TH781 IPA Test Setup

TH781 IPA

- •Need 130-185 kW output, will work with existing 5.5 kW solid-state driver amplifiers
- •Replaces Burle 4616 tetrode IPA, same performance
- •Use same anode power supply as Burle 4616 Tetrode

Need 25 kW IPA driving TH628 at DTL1 Example: 10 kW Commercial TV Transmitter

1200 Watt Water-Cooled LDMOS Module

Relocated into Former LEDA Building

Layout of New RF Test Area

RF Test Diagram

BLOCK DIAGRAM - 201.25 MHz RF TEST STAND IN BUILDING MPF365
INITIAL AMPLIFIER TEST CONFIGURATION

jtml 9_11_07

IGBT HV Power Supply Continental Electronics Corporation

Converted -95 kV Beam P.S. to +45 kV for Anode Power Supply

Testing Power Supply 0.4 Amp @ 20 kV DC

20K Ohm Exterior Load

- •Built by NWL in 1980s
- •Test load for 100 kV 5 amp beam PS
- •Air cooling, with fan
- •Draws 1.4 amps @ 28 kVDC
- •Reduces efficiency of IGBT PS by ~3%
- •May modify raise value to 50K Ohm

88 kJ Capacitor Bank

Inside LANL Capacitor Bank

Inside LANL Capacitor Bank

Filament, Screen and Grid Power for TH628

Solid State Driver

- •54 dB Gain
- •5.5 kW Peak Output
- Water Cooling
- •(4) Installed 1995
- •(32) MRF176GV MOSFETs
- Extremely Reliable
- •Will be Re-used

Water Load Test

Ionized Water Loop

AFT Circulator Sweep Test

< 0.07 dB loss [S21] at f_{center}

< 0.15 dB loss +/- 3 MHz

≥ 26 dB isolation [S12] at f_{center}

≥ 10 dB isolation +/- 3 MHz

< 1.05:1 VSWR at f_{center}

35.5 cm coaxial line

1728 kg, ≈ 3 m long

