

HIGH POWER, WIDEBAND, SOLID-STATE AMPLIFIERS FOR LEIR AND J-PARC RF SYSTEMS.

Summary

- Overview
- Basic building block
- Hybrid coupler/splitter
- Delay compensated transformers
- An ultra wideband hybrid
- Directional coupler
- 1 kW amplifier
- Use at CERN
- Use at J-PARK

Overview

CERN LEIR machine and J-PARC RCS and Main Ring required driver amplifiers for their grid tubes power stages:

- ✓ Frequency range : 0.5 6 MHz
- ✓ Power 1kW, 4kW and 9kW
- ✓ Duty cycle 50% to 100%
- ✓ High reliability
- ✓ Maintenance ease

Specs well suited for a solid-state modular solution!

Overview

- Since 1993 the CERN PSB accelerating cavities use solidstate drivers built around MRF151G RF mosfets.
- The operation experience (16 units) is very good as no amplifier failure happened in the past (except in case of tetrode ceramic breakdown!)
- The units are installed in a radioactive environment and the integrated dose over the last 14 years is >10k gray.
- No performance degradation has been measured in the operational units.

This unit were the starting point of the new design!

- Class AB for good efficiency and linearity.
- Ability of operating on all load conditions.
- No circulators available for this frequency range so
 - ✓ Full reflected power must be dissipated on the active device.
 - ✓ Load mismatch directly affects the mosfet drain load.

- Single push-pull stage built around an over dimensioned MRF151G double mosfet.
- Device operated at 35V instead of nominal 50V
- Device operated at ~140W instead of nominal 300W

Similar or equivalent devices:

- √ D5029UK from Semelab
- ✓ BLF278 from Philips
- ✓ SD2932 from ST
- ✓ SR706 from Polyfet

- At high power, in class B, conduction angle is close to 180 degrees.
- One device provides the full power during half cycle.
- For 140W and 35V supply voltage the drain load and current are then:

$$R_D = \frac{(V_{DS} - V_{DSS(ON)})^2}{2 \cdot P} = \frac{(35 - 5)^2}{2 \cdot 140} \approx 3.125\Omega$$

$$I_D = \frac{(V_{DS} - V_{DSS(ON)})^2}{R_D} \approx 10A$$

$$I_D = \frac{(V_{DS} - V_{DSS(ON)})^2}{R_D} \approx 10A$$

- Matching achieved with a standard transformer made of coaxial cables wound on a ferrite tore.
- When driven from one drain connection with a 50Ω load:

$$n = \frac{V_{OUT}}{V_D} = 4$$

$$R_D = \frac{50\Omega}{n^2} = 3.125\Omega$$

 At low power, in class A, both devices provide power during the whole cycle and are driven in counter phase.

In this case each drain is loaded by:

$$R_D' = \frac{50\Omega}{\left(\frac{n}{2}\right)^2} = 2 \cdot R_D = 6.25\Omega$$

 To equalize the mid-band gain at low and high power (class A and class B)

$$G_{VA} = gm_A \cdot R_D \cdot n = gm_A \cdot 2 \cdot R_D \cdot n$$

$$G_{VB} = gm_B \cdot R_D \cdot n$$

$$\left| \frac{G_{V_A}}{G_{V_B}} = \frac{gm_A \cdot 2}{gm_B} = 1 \right|$$

 Assuming the transformer to be ideal and the mosfet output impedance purely capacitive the high frequency cutoff is:

$$f_c = \frac{1}{2 \cdot \pi \cdot R_D \cdot C_{OSS}} \approx 85MHz$$

The gate capacitance is:

$$C_G \approx C_{ISS} + C_{RSS} \cdot (1 + gm_B \cdot R_D) \approx 400 pF + 30 pF \cdot (1 + 6 \cdot 3.125) \approx 990 pF$$

• The input transformer is a balun with 1 to 9 impedance ratio (50Ω to 5.55Ω)

$$f_c = \frac{1}{2 \cdot \pi \cdot \frac{R_G}{4} \cdot C_G} \approx 115MHz$$

- The output transformer uses 1 tore type 4W620 (Wuerth)
 - ✓ Od=26mm, Id=13mm, H=28.5mm
 - $\sqrt{S} = 1.85 \cdot 10^{-4} \text{ m}^2$
 - \checkmark Al \sim 2.8 μ H/N²
- N=4 turns on the balun and N=2 turns for the transformer gives:
 - ✓ B_{MAX}=26.5mT @ 0.5MHz and 140W
 - $\checkmark f_1 \sim 90KHz$

Ferrite saturation typically ~200mT. CW operation normally possible with B~20-30mT

- The input transformer uses 4 tores type 3E5 (Ferroxcube)
 - \checkmark Al~5 μ H/N²
- N=3 turn on the high impedance side gives:
 - $\checkmark f_1 \sim 45KHz$

Thermal protection simply insured by thermal switch glued on the mosfet case.

Hybrid coupler/splitter

- Classic hybrid combiner/splitter circuit
- n-ways device
- R_I provides isolation between ports.
- If all ports driven with identical signals
 - ✓ no current through R₁.
 - $\checkmark V_L \sim V_{IN} sin(\omega t_d)$
- Frequency response limited
 - \checkmark notch at $f_n = 1/4t_d$
- Simple detector provides indication of unbalanced drive (or broken module).
 Very useful for servicing!

H. Granberg, Broadband transformers and power combining techniques for RF, Motorola AN-749

Delay compensated transformer

• In ferrite loaded hybrids and transformers B_{MAX}<20-30mT for CW operation.

 $B = \frac{v}{\omega \cdot S \cdot n}$ Number of turns
Ferrite cross section

- When combined power get high...
- · When extending the low frequency response...

... B_{MAX} limited by increasing the number of turns or the ferrite cross section

 This increases the cable length that affects the high frequency response:

first notch placed at $f_n = 1/4t_d$

... the solution is delay compensated devices!

Delay compensated transformer

- Cables paralleled on the low impedance side
- Cables in series on the high impedance side.

In theory no high frequency limit!

An ultra wideband hybrid

Udo Barabas, "On an Ultrabroad-Band Hybrid Tee", IEEE Transactions on microwave theory and thecniques, vol.MTT-27, no.1, January 1979

Directional coupler

Assuming the impedance of the 1 turn winding <<Ro and the impedance of the n-turns winding >>Ro then, for any value of ZL:

$$V_F \sim -\frac{V_g}{n}$$

simply proportional to the incident wave

Inverting the current sample direction we get

$$V_R \sim V_F \cdot \left[\frac{Z_L - R_o}{Z_L + R_o} \right] \sim V_F \cdot \rho$$

thus proportional to the reflection coefficient.

DC distribution and filtering

15W Driver

9 ways splitter

Survey electronics

Directional coupler

Water cooled copper plate

9 ways combiner

dB Bandwidth 0.2 - 10 MHz dB Deg

-3dB Bandwidth	0.2 - 10 MHz
-1 dB Bandwidth	0.5 – 5 MHz
Gain	58 dB ±1.5 dB
Output power at 1 dB compression	>1 kW
Harmonic distortion	<-15 dBc @ Pout 1 kW <-18 dBc @ Pout 500 W
Gain linearity	±1 dB
Input impedance	50 Ω VSWR 1.1:1 max
Load impedance	50Ω , no damage when operated with any load.
Protections	Overtemperature Overcurrent
Monitoring	RF Drive input (-26 dB) Output Forward Power (-46dB) Output Reflected Power (-46dB) Driver and final stages DC current 140W modules power balance
Power requirements	35 V 100 A DC
Cooling	Water

1 kW amplifier

CERN LEIR

• Six 1kW units have been produced for CERN use in LEIR machine

4 in use without troubles for 2 years (2 spares)

J-PARC

- For J-PARC more than 100 1kW units have been manufactured.
- Units combined to get 4 kW and 8 kW.
- For 8 kW, nine units have been combined to achieve the required power also in case of failure of 1 unit.
- In 2007, 70 units have been operated for 3 months without troubles.
- This means a total of ~1000 MRF151G have been installed and tested.
- More than 600 MRF151G where operated.
- No failure occurred until now.
- Additional production of 40 more 1kW units planned.

Thanks to Dr. Chihiro Ohmori for the information and pictures!

J-PARC

Rapid Cycling Synchrotron 8 kW assemblies