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The International Fusion 

Materials Irradiation Facility

Accelerator reference design [1]

• Two CW 175 MHz linear accelerators

• 125 mA, 40 MeV deuteron beam.

• Conventional, room-temperature, RF linac
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IFMIF RF power system 

conceptual design
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IFMIF Power 
Requirements
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Baseline RF Power 
Source
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1000 Hours operation demonstrated with 98.7% availability



5th CW and High Average Power RF Workshop 8

Overview

1. IFMIF RF System

2. Conceptual design of an IOT

3. Conceptual design of a magnetron

4. Conclusions



5th CW and High Average Power RF Workshop 9

Inductive Output Tube 
(IOT)

• Grid-modulated like a 
tetrode

• Operated in class AB or B 
for high efficiency

• All electrons have full 
EHT energy

• Compared with a tetrode

– Lower current

– Higher voltage

– Higher gain
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Inductive Output Tube 
(IOT)

21 dB22 dB21 dBRF Gain

64 %70 %73 %Efficiency

1.39 A3.5 A5.5 ADC Current

34 kV37 kV66 kVDC Voltage

30 kW90 kW250 kWRF Power

1300 MHz500 MHz267 MHzFrequency

IOT State of the Art [2], [3]
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IOT State of the Art
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Conceptual Design of 

175 MHz / 1.0 MW IOT

• PRF = 1.0 MW; f = 175 MHz

• Assume efficiency: η = 65%

– PDC = 1.0 / 0.65 = 1.54 MW

• Assume peak current (Class B)

– Ipk = 3.6 I0

• Assume peak perveance Ipk/V
3/2 = 2 × 10-6

– Ipk = 58A I0 = 16.2A V0 = 95 kV

• Assume peak cathode loading 1 A/cm2

– Cathode radius: rc = 43 mm
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Conceptual Design of 

175 MHz / 1.0 MW IOT

• Electron velocity: 

– u0 = 1.6 × 108 m.sec-1

• Electronic propagation constant:

– βe = ω/u0 = 6.9 m-1

• Choose normalised beam radius: βeb = 0.06

– b = 8.6 mm

– Drift tube radius: a = 1.5 × b = 13mm

– Area convergence: (rc / b)2 = 25:1

– Brillouin field: BB = 0.045T
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Conceptual Design of 

175 MHz / 1.0 MW IOT

• Typical gridded gun parameters

– Grid transparency: 80%

– Grid wire radius: 0.5 mm

– Grid pitch: 5 mm

– Amplification factor: 200

– Grid voltage at cut-off: Vg0 = -475V
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Conceptual Design of 

175 MHz / 1.0 MW IOT

• RF performance

– Fundamental RF beam current: I1 = 0.5 × Ipk = 29A

– RF grid voltage: Vg1 = 475 V

– RF input power: Pin = 0.5 × Vg1 × I1 = 6.9kW

– Gain: 21.6dB
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CW Magnetrons

---RF Gain

70 %65 %72.5 %Efficiency

3.3 A6.0 A16 ADC Current

13 kV18 kV44 kVDC Voltage

30 kW100 kW500 kWRF Power

2450 MHz915 MHz915 MHzFrequency

CW Magnetron State of the Art [4], [5], [6]
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CW Magnetron 

State of the Art
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CW Magnetron Efficiency
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Injection Locking
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Magnetron Frequency 

Pushing
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• Frequency depends on the anode 
current

• Switched-mode power supply in a 
phase-locked loop  stabilises the 
frequency by controlling the current  
[8], [9] 
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Accurate control of a 
‘cooker’ magnetron

• Frequency is stabilised with a 
phase-locked loop

• Injection locking is then possible 
with much lower injected power

• Phase locked to better than 1º with 
injected power – 37dB

• 90º PSK modulation demonstrated 
at 2 MHz

• Magnetron responds to 90º phase 
shift in ~200 nsec

• It might be possible to use 
controlled magnetrons to power an 
accelerator

-80

-60

-40

-20

0

2.43 2.44 2.45 2.46 2.47

Frequency (GHz)

-80

-60

-40

-20

0

2.4496 2.4498 2.45 2.4502 2.4504

Frequency(GHz)

RBW 2KHz



5th CW and High Average Power RF Workshop 23

Conceptual Design of 
175 MHz / 1.0 MW Magnetron

• PRF = 1.0 MW; f = 175 MHz

• Assume efficiency: η = 85%

– PDC = 1.0 / 0.65 = 1.2 MW

• Assume impedance V0/I0 = 3.0 kΩ

– V0 = 60 kV I0 = 20A

• Use a high normalised magnetic 
field to achieve the target efficiency
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Conceptual Design of 
175 MHz / 1.0 MW Magnetron

Design criteria:

• Cathode loading < 1.0 A/cm2

• Cathode height << λ0

• Anode vane tip temperature < 600 K

• Product EVa < 1000 kV2/mm 
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Conceptual Design of 
175 MHz / 1.0 MW Magnetron

55.9 cmAnode outer radius

17.1 cmAnode height

13.1 cmAnode vane tip radius

10Number of anode cavities

8.3 cmCathode radius

Leading Dimensions
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Conceptual Design of 
175 MHz / 1.0 MW Magnetron

0.043 TFlux densityElectromagnet specification

Self inductance

Resistance

Power

Current

Voltage

400

1 A/mm2

26 cm

70 cm

60 cm

RF power change by 1% in 100 msec requires ∆V = 24V

0.94 HNumber of turns 
(tape)

0.57 ΩCurrent density 

340 WHeight

24 AOutside radius

14 VInside radius
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Comparison of Sources

YesYesNoElectromagnet
Anode and (probably) cathodeCollectorAnodeCooling
< 1 kW5 kW50 kWDrive power
> 30 dB23 dB13 dBGain

85 %65% (>75% with a multi-
element depressed 
collector

71%Efficiency
20 A16.2 A103 AAnode current
60 kV95 kV14 kVAnode voltage
MagnetronMagnetronMagnetronMagnetronIOTIOTIOTIOTDiacrodeDiacrodeDiacrodeDiacrode
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IOT Development

• Possible with current technology
• Would require 2 - 3 years R&D
• Issues

– Mechanical stability of control grid 
– Multi-element depressed collector design
– Demonstration of life and reliability
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Magnetron development

• Appears to be possible
• Would require 4 – 5 years R&D 
• Issues

• Cathode choice for long life 
• Development of switched mode power supply 
• Demonstration of simultaneous control of 

amplitude and phase stability
• Demonstration of lifetime and reliability
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