
JLab Update

Rick Nelson

12 GeV

- DOE Road to Upgrade is Critical Design Path
- · CD-0 Formal Project Definition Phase (2004)
- · CD-1 Approve PED Project Engineering/Design (2006)
- · CD-2 Approve Performance Baseline (2007)
- · CD-3 Approve Construction Start (expected 2008)
- · CD-4 Approve Start of Operations (expected 2015)

Path to 12 GeV

Major RF Changes

- Upgrade existing systems
- · Add new higher power RF systems
- Upgrade existing systems for higher power
- · Existing cryomodules are being refurbished
 - C50 (50 MV/m) result
 - Increase RF capabilities from 5 to 6.5 kW
 - · Take advantage of better cryomodule performance
 - Retain original klystrons
 - Upgrade to existing HVPS
- · Add new RF zones
 - Ten C100 cryomodules (100 MV/m)
 - Ten new RF systems
 - · Includes new designs for high power and low level elements

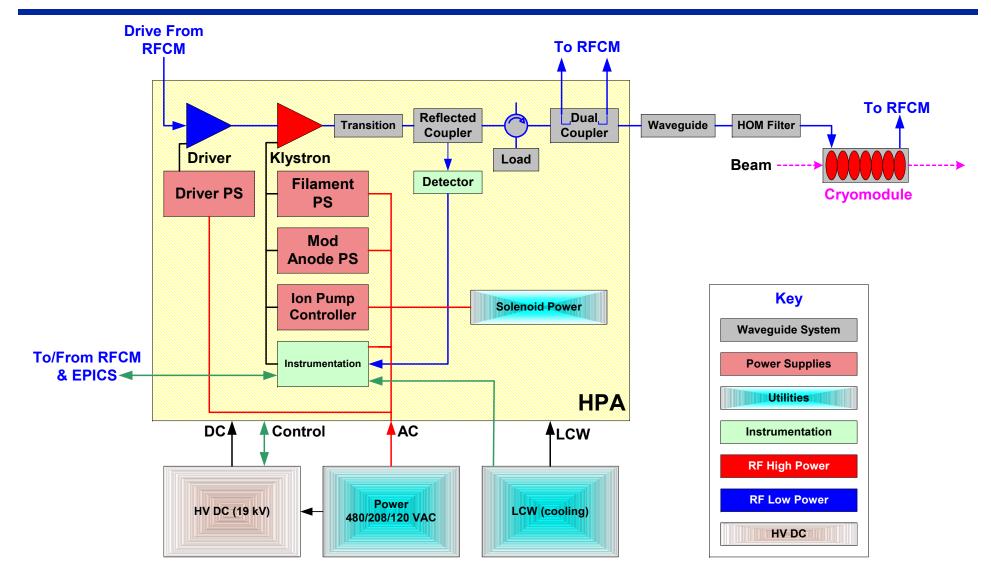
VKL7811W Klystron History

- · Originally: ~2 kW and air-cooled collector
- Modified for CEBAF: 5kW, water-cooled collector, modulating anode added
- · JLab FEL: voltage increase, for 8 kW
- · Voltage increase and cooling additions to tube for 10 kW (Stanford FEL & others @ 1.3 GHz)
- · This upgrade: only increase voltage & cooling

Upgrade Existing Zones

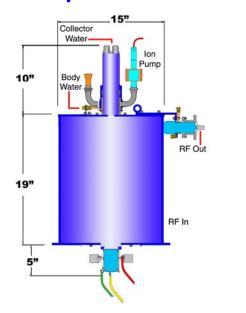
- Increase voltage
 - 11.6 kV to ~12.6 kV
 - A minimal cost upgrade (few k\$ per zone)
 - Original power supply is delta-wye, 12-pulse supply (series-connected bridges)
 - Addition of simple boost supply
 - Transformer & 6-pulse rectifier only
 - Components added in return leg (ground)
 - · Reduces transformer insulation requirements
 - Filter network unchanged
- Install klystrons recertified for 6.5 kW

Boost Supply


New RF Zones

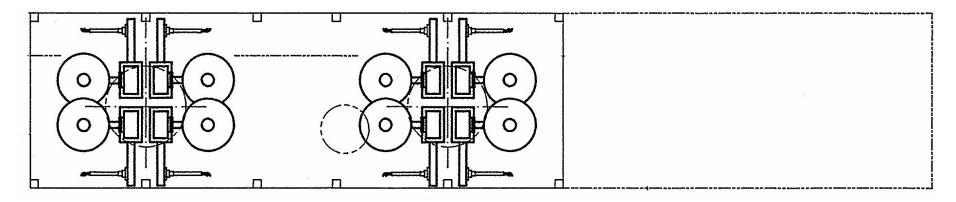
- · Use the same general topology as before
 - 1 klystron feeding one cavity
 - 8 klystrons per zone
- · 12 GeV HP RF project organized as three systems
 - Klystron
 - DC Power
 - Waveguide
- · Main requirement change is for 13 kW device
 - IOT possible
 - Cost is a key factor
 - Budgetary pricing suggest IOT will cost more
 - IOT driver cost significant

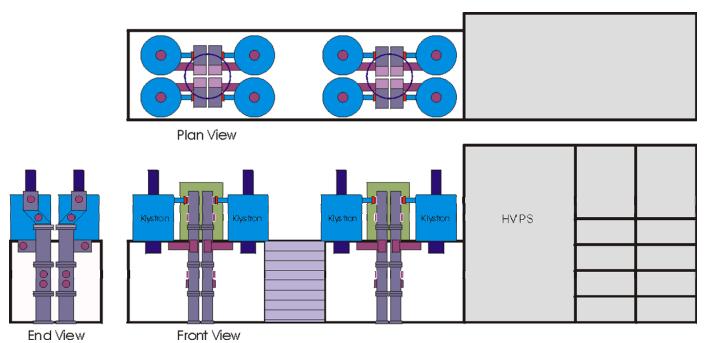
New Zones



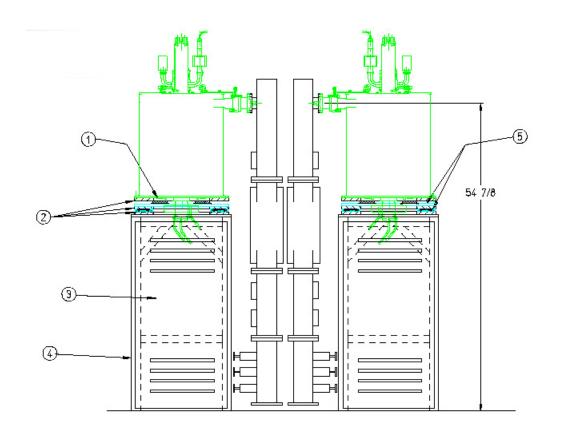
10 Pounds... 5 Pound Bag

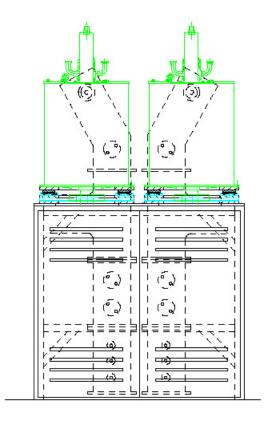
- · It must fit existing available space
 - CEBAF was originally conceived as a 4 pass / 25 zone machine for 4 GeV
 - Built as 5 pass / 20 zone to save money
 - Linac buildings and tunnel were built for 25 RF zones
 - Upgrade will fill the empty slots
- · New RF (10 zones) must fit same footprint
 - Larger klystrons

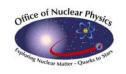




Layout







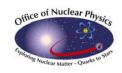
Layout

High Power RF

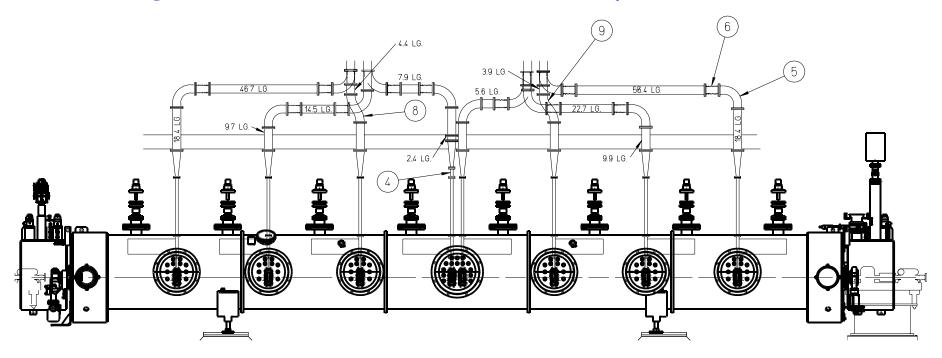
- Basic requirements are
 - 13 kW CW
 - 1497 MHz
 - Klystron or IOT
 - · Efficiency, cost, historical reliability
 - Driver cost could be significant
 - Previous lifetime experience is limited at other than UHF)
 - · A klystron design approach started with an SBIR
 - Expected to speed procurement process
 - Developed tube worked but was killed during test
 - Only 1 vendor of 4 was willing to build the design
- No money for early procurement as with CEBAF
 - Soliciting vendor interest in either
 - · Responses are due by next week
 - · For easier cost comparison, IOT must include driver amp

DC Power

- HV PS could be switcher or conventional (transformer/rectifier)
- · Again, size may be a factor
- · HPA / transmitter
 - Unlike before, not fully enclosed
 - Klystron rack (pedestal with 2 klystrons each)
- · Contains aux supplies (filament mod anode ion pump)
- Instrumentation & interlocks
 - Must monitors & control all klystron signals
 - Filament V/I, mod anode V/I, ion pump V/I, cathode I, body I, reflected power, interlocks...
 - · Data logging & fault capture
- · Final design has been slowed until klystron details are known
 - Accurate mechanical drawings not possible
 - Klystron not yet available

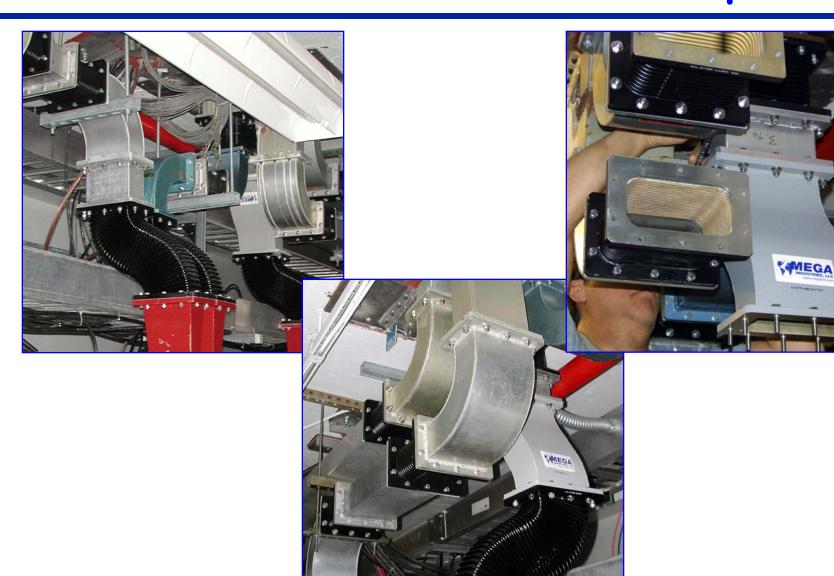


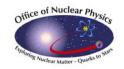
HPA


- · CEBAF original approach was to purchase from industry
- · Original costing for 12 GeV was based on design & build
- Recent reevaluation of this approach suggest no change
 - This depends on vendor pricing
 - Latest vendor estimates are high
- · Final design has been slowed until klystron details are known
 - Klystron not yet available
 - Procurement process has begun
 - Expect award this year
 - Design & build to
 - Purchased system
 - HPA Controller Altera FPGA + PC-104 to EPICS
 - · 128 ADC
 - · 32 DAC
 - · 48 relay out
 - · 48 digital in

Waveguide Systems

- · WR650 waveguide exits down to CM in tunnel
- · Original layout kept path lengths 1/2 λ multiples (no circulator)
- · Layout is different with waveguide on one side only
- · Two installed cryomodules use this layout
- · Routing not as convenient as before, but possible





Custom Pieces to Connect Up

Issues

- · Klystron not purchased, not designed
 - Final mechanical design difficult
 - Final operating voltages not known which affects many systems
 - · Estimated values are being used
 - Based on SBIR outcome, some existing subsystems may work with modifications
- Possible change in acquisition plan from
 - Design & build, to purchased system
 - But, in-house design is ongoing
 - Ultimately choice will depend on vendor pricing

RF Power Systems Improving Efficiency: Options

Reducing Operating Costs

- US labs are struggling with reduced budgets and rising costs
- · Dealing with the shortfalls includes:
 - Reductions in operating time
 - Layoffs & early retirement
 - Deferred/reduced procurements (klystrons...)
 - Also look at reduce energy consumption
 - · Primarily large power users like CHL (cryogenics) and RF

Reducing the RF Power Bill

- Turn off unused/unneeded RF zones
- Adjust supply voltage based on needs
 - Added autotransformer with tap switch for easier adjustment
- · Adjust anode to reduce power consumption
 - Software solutions automatically optimized mode anode based on RF needs
 - · Good results, but operational difficulties
 - Recovering from trips may leave insufficient headroom to quickly restore beam
 - Not always running economized
 - Another possible solution is higher efficiency RF power sources
 - One possible bonus: more power with same DC voltage

Efficiency Exercise

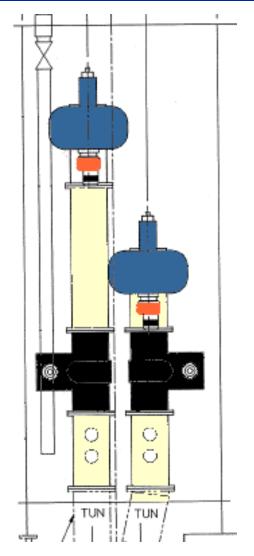
- History
 - Present klystron is ~ 33% efficient
 - Energy costs are rising
- · Goal
 - Explore possibility of replacing existing devices with a higher efficiency device
 - Pay for a new device with a combination of money
 - · Already rebuilding and purchasing new klystrons
 - · Reinvest the money saved on power in a better device
 - Ultimately, replace all 340 klystrons with a new device over several years

Ground Rules

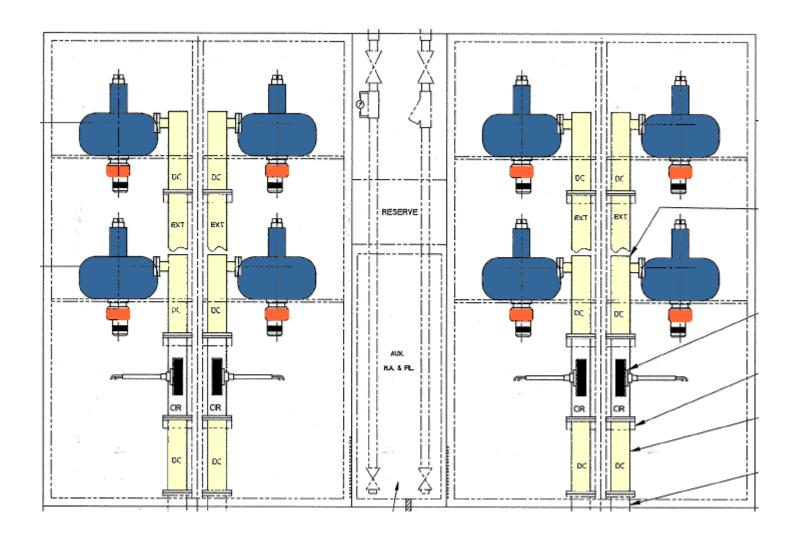
- Present RF system consumes about 5MW
 - Klystrons provide 33% efficiency (at best)
 - A new design could reach >50%
 - Energy saving would ramp from 270kW to 1.6MW after 6 years
 - · Assuming RF runs 80% of calendar year, savings could be \$516k/year (FY06\$)
 - 10-year savings of \$7M (2006\$, 15% real increase 2007 and 7%/year real increase out years)
- Cost of our present klystron roughly \$25k
 - 10-year breakeven would require tube cost of ~\$34k (estimate for 13 kW solenoid tube estimate is higher)
 - Energy savings must offset higher costs of new device
- · Problem: a new tube will likely not fit into our existing system without modification (~\$50k/zone)... or maybe not at all
 - Replacing full system not in budget

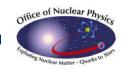
More Ground Rules

- Most tubes would be replaced through attrition
 - Tubes are cheaper to rebuild than buy, but can't rebuild indefinitely
 - New devices will cost more; up front cost / savings later
 - Anticipate \$300k in repairs / \$500k replacements annually of existing klystron
- Other significant restrictions
 - New device *must be made to fit* into existing hardware
 - · Avoid significant changes to present systems
 - Minimize modification costs
 - Must use existing HV PS (presently adjustable)
 - Ideally should get us more power with same HV input (6.5 kW)


Thomas Jefferson National Accelerator Facility RF Power Systems / CWRF08 / March 27, 2008

Layout





Layout

New Device: Klystron or IOT

- Vendor responses suggests
 - Solenoid focus (PM not practical)
 - Add solenoid PS \$\$
 - Significantly larger
 - Won't easily fit existing space \$\$\$\$

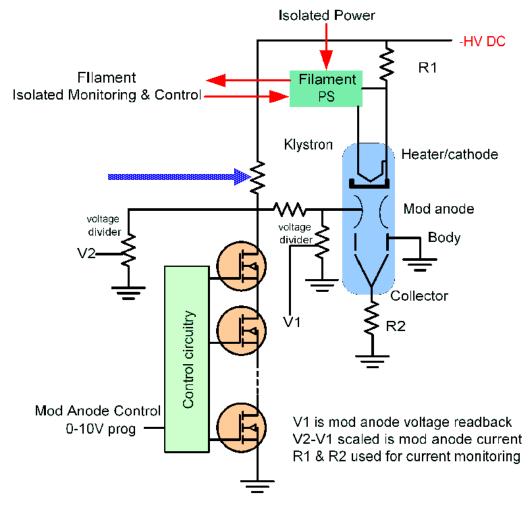
- IOT

- Smaller size could work depending on magnet structure
- 6.5 kW might be available at existing HV
- · Add solenoid PS \$\$
- Low gain = upgrade driver amp
 - From 2W to > 65W \$\$\$
- No IOTs built yet for 1.497 GHz

No Obvious Winner

- Based on vendor info and constraints it seems unlikely an upgrade can be made
 - A new device will likely be too large to adapt to existing hardware
 - Expected costs don't fit available budget
- · At this point, no further action is expected and no changes are planned unless other funding is found
 - DOE mandate with special funding?

Mod Anode Update


Mod Anode Control

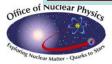
- · Mod anode is primarily used for two functions
 - Energy reduction at low power
 - · "Economize mode" under software control
 - Iterative process to reduce power consumption but retain sufficient headroom for stable operation
- Tube protection
 - Used to reduce mod anode leakage current across
 HV ceramic
 - With software monitoring prevents catastrophic failure
 - Allows tubes to be used longer
 - Richard Walker will discuss this in more detail in his talk tomorrow



Mod Anode Control

Simplified Klystron Power & Metering

Resistor Load Banks



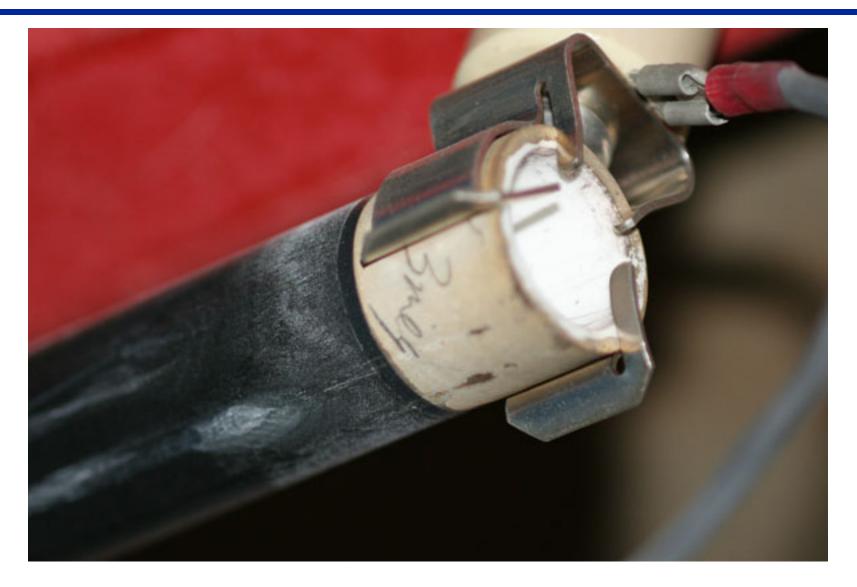
- •11.6 kV / 168W
- •8 x 100k, 50 watt w-w
- Glastic type channel

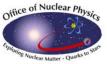
Resistors Are Easy

- 1.6 Meg Ω , 11.6 kV (84 watts max @ KMAV=0)
- 1st choice would have been Kanthal/Globar/CESIWID
 - Resistance value at or beyond available
 - Poor performance for high ohm values
 - · Heat caused resistors to eventually open
 - Power Film Systems/Altronic Research, Yellville Arakansas
 - PFS12-804CPL
 - · 300 watt, air-cooled @ 40 °C ambient
 - · 12"x1" thin-film on ceramic core with glass
 - Values to 20 Meg Ω , 10 kV/in

Performance to Date

- · Old wire-wounds had run over a decade
- Some new resistors have degraded in < 2 years
- · Physical (visible) changes were noticed
- · Resistance changed





Resistor Degradation

- 1.6 Meg has increased to 2.4 Meg and continues rising
- Vendor suggest corona damage
 - Eliminated power & temperature as an issue
 - Rated at 10 kV/in
- · Other suggestions from vendor include
 - Coating problems
 - · Uneven thickness, inadequate overlap, glaze too thin
 - Multiple production runs seem to exhibit similar symptoms
 - Modified units are presently being tested
 - · Increase glaze thickness
 - · Double metallize (sandwich) the connections
 - Add silicone over-coating (Dow Sylgard®)
 - · Results aren't in yet, but resistor not essential in most cases

