SEARCHING FOR HIDDEN VALLEYS

KATHRYN M. ZUREK
UNIVERSITY OF WISCONSIN MADISON
ASPEN WINTER CONFERENCE

Summary

* Hidden valleys

- * What are they? (Strassler, KZ 2006)
 - * Low mass hidden sectors connected to SM through higher dim ops
- * Why are they interesting and experimentally relevant?
- * Search techniques, challenges (Han, Si, KZ, Strassler 2007)

Focus of theoretical and experimental HEP

* Reach for higher energy frontiers

Focus on high mass phenomena

- * Theory: solutions to the hierarchy problem
 - * Extensions of the Higgs sector
 - * SUSY
 - * Technicolor
 - * Extra dimensions (large or warped)
 - * Little Higgs
 - * Extra Z'
- * Hundreds of GeV to TeV scale particles

TeV scale physics + (plus)

- * May be light valley particles (low elevation of valley floor)
- * Next valley must be hidden (neutral under SM gauge groups)
- * But charged under high mass mediator

TeV scale physics + (plus)

- * May be light valley particles (low elevation of valley floor)
- * Next valley must be hidden (neutral under SM gauge groups)
- * But charged under high mass mediator

TeV scale physics + (plus)

- * May be light valley particles (low elevation of valley floor)
- * Next valley must be hidden (neutral under SM gauge groups)
- * But charged under high mass mediator

Schematic

Communicator

(Heavy)

Standard Model

Hidden Sector

(Light)
No SM charges

 $\frac{\mathcal{O}_{SM}\mathcal{O}_{HV}}{M^k}$

Schematic

Gravity, messenger fields

Standard Model

SUSY breaking with auxiliary fields

(Heavy)
No SM charges

New feature:
Hidden sector is light!
(masses of particles in HV << 1 TeV)

What is in the hidden valley?

Confinement sets height of valley floor

 π_v stable POF

$$m_{\pi_v}^2 \sim \hat{\Lambda} m_v$$

What is in the hidden valley?

Many theories with this structure:

QCD-like theory with F flavors and N colors
QCD-like theory with only heavy quarks
QCD-like theory with adjoint quarks
Pure glue theory
UV-fixed point = confining
N=4 SUSY Conformal
RS throat

Seiberg duality cascade
KS throat
Remnant from SUSY breaking
Partially higgsed SU(N) theory
Banks-Zaks sector
Unparticles

What's in the hidden valley?

Mass gap -->0, integrate out heavy quarks, approx. unparticle

Phenomenology of the hidden valley

- * Pepends on the content of the hidden sector
 - * How many quarks? Lighter or heavier than confinement scale? Scale of confinement?
- * Depends on the mediator (dim of operator)
 - * Higgs? Z'? KK mode? Messenger fermion?
 - * Pecay modes (which SM particles?)
 - * Lifetimes (may be long)

Models with a mass gap

- * Most important features
 - * Total CM energy of event is high
 - * Produce (heavy) mediator on shell
 - * Helps with backgrounds enormously!
 - * Low mass resonance (J/psi in high Ecm event) $\rho \to \mu^+ \mu^-, b\bar{b}$

- * Z' mediator
- * SU(N) gauge theory with 1 light quark
- * Production

* Pecay

SM pairs reconstruct to low mass bound state

 $ho_v(1^-)$ decays democratically to all flavors q, I $\eta_v(0^-)$ decays predominantly to heavy flavor

* Z' mediator

10 TeV

Z' mass

1000

100

10

* SU(N) gauge theory with 1 light quark

* Z' mediator

10 TeV

Z' mass

1000

100

10

* SU(N) gauge theory with 1 light quark

- * Z' mediator
- * SU(N) gauge theory with 1 light quark

1000
100
10
10 $\frac{5 \text{ TeV}}{10 \text{ TeV}}$ 1 $\frac{m_{Z'}}{g'} = 20 \text{ TeV}$ 0.1

Z' mass

Each pair reconstructs to low mass v-hadron

- * Z' mediator
- * SU(N) gauge theory with 1 light quark

Each pair reconstructs to low mass v-hadron

Reconstruct entire event to Z' resonance

- * Z' mediator
- * SU(N) gauge theory with 1 light quark

Han, Si, KZ, Strassler 2007

Event topology

$$\ell_{\eta_v \to b\bar{b}} \sim 4 \text{ cm} \frac{(20 \text{ GeV})^7}{f_{\eta_v}^2 m_{\eta_v}^5} \left(\frac{m_{Z'}/g'}{10 \text{ TeV}}\right)^4$$

Displaced vertices

Image courtesy of Rome/Seattle ATLAS working group on displaced decays

If no displaced vertex

$$\ell_{\eta_v \to b\bar{b}} \sim 4 \text{ cm} \frac{(20 \text{ GeV})^7}{f_{\eta_v}^2 m_{\eta_v}^5} \left(\frac{m_{Z'}/g'}{10 \text{ TeV}}\right)^4$$

- * High multiplicities
- * Low mass stuff in event
- * How to distinguish from QCD?

Search methods and backgrounds

Handles

* Resonant mediator production u,d z'

* Z'/Z

* SM pairs reconstruct to very narrow resonance (analogue of J/psi)

* Event shape variables

Search methods

- * Ecm (Z')
- * Multiplicity
- * Hard muons (two, pT > 10 GeV)
- * Event shape (sphericity and thrust)
- * Cluster mass
- * Narrow! low mass resonance

- * All backgrounds
- * Drell-Yan + jets (1 nb)
- * Soft QCD (light quarks--pions)
- * Harder QCD (heavy quarks--c,b) (microb)
- * tops, soft QCD, DY + jets
- * Everything

Multiplicity

Z mediator

Z' mediator

Two hard muons

- * Help with soft QCD background
 - * 2 with pT > 10 GeV
 - * Z mediator $\sigma(Z) = 125 \text{ fb} \rightarrow 0.7 \text{ fb}$
 - * Z' mediator $\sigma(Z')=370~{\rm fb} \rightarrow 120~{\rm fb}$
- * --> Z mediator difficult; focus on Z'

Event shape variables

* Low mass v-hadron likely to escape the detector or leave displaced vertex

$$m_{\rm vh} < 20 \; {\rm GeV}$$
 $\ell_{\eta_v \to b\bar{b}} \sim 4 \; {\rm cm} \frac{(20 \; {\rm GeV})^7}{f_{\eta_v}^2 m_{\eta_v}^5} \left(\frac{m_{Z'}/g'}{10 \; {\rm TeV}}\right)^4$

* Higher mass v-hadron has different shape

Theorist's event shape: sphericity and thrust

Z' mediator

Cluster mass for tops

Z' mediator

Narrow peak in muon

u,d Z' $\overline{u},\overline{d}$

 $100 \text{ fb}^{-1} \text{ of data}$

Summary

- * Low mass hidden sectors can appear in many extensions of the SM
- Qualitatively different phenomenology--perhaps displaced vertex
- * Look for narrow low mass resonances from high energy events
- * Round events with high cluster mass; pairs of muons reconstructing to light resonance. High multiplicities.