# What's going on with Dark Energy? 

Bill Carithers
Aspen 2008

## I assume you all know:

Expansion of the univerve is eccelerailinc

Dark energy
$\Lambda$ ?

Off by $10^{60}$
"worst prediction in the history of science"

Why now?

## GR on a slide

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi \frac{G}{c^{4}} T_{\mu \nu}-\Lambda g_{\mu \nu}
$$

Simplify, simplify... homogeneous, isotropic, perfect fluid (stress-energy tensor becomes diagonal)
then

$$
\begin{aligned}
& \left.H^{2} \equiv\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho-K \frac{c^{2}}{a^{2}}\right) \text { curvature term } \\
& 3 \frac{\ddot{a}}{a}=-4 \pi G\left(\rho+\frac{3 p}{c^{2}}\right)
\end{aligned}
$$

$a$ is the (expansion) scale factor $=1 /(1+z)$ H is Hubble factor


## OK, two slides

$$
H^{2} \equiv\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho
$$

Define: $\rho_{\mathrm{c}}=3 \mathrm{H}_{0}{ }^{2} / 8 \pi G$ where $H_{0}$ is the current value of Hubble const $\Omega=\rho / \rho_{\mathrm{c}}$ for each component (l.e., baryons, dark matter, dark energy, radiation)

In a flat universe, $\quad \sum \Omega_{i}=1$
Define: equation of state, $\quad w=\frac{p}{\rho}$

$$
\begin{aligned}
3 \frac{\ddot{a}}{a} & =-4 \pi G\left(\rho+\frac{3 p}{c^{2}}\right) \\
& =-4 \pi G \rho(1+3 w)
\end{aligned}
$$

Caution about astro-speak $\mathrm{H}_{0}=(100 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}) \mathrm{h}$

For acceleration, $\mathrm{w}<-1 / 3$, cosmological constant implies $w=-1$

$$
H(a)=H_{0} \sqrt{\Omega_{m} a^{3}+\Omega_{d e} a^{3(1+w)}+\Omega_{k} a^{2}}
$$

## What is it that we actually measure?

+ Answer: detailed expansion history of the universe.
+ Need two ingredients
+ Distance (equivalent to time=age)
+ Red shift


## The program

+ Measure a(t) with standard rulers, candles
+ Strategy 1: Assume GR and extract dark energy equation of state
+ Is it -1?
+ Does it vary? $w=w_{0}+w_{a}(1-a)$ ?
+ Need multiple techniques to sort out the degeneracies
+ Strategy 2: Measure growth of structure
+ Compare the results of the two strategies as a consistency check on GR

$$
\frac{a}{a}=H_{0} \sqrt{\Omega_{m} a^{3}+\left(1-\Omega_{m}\right) a^{3(1+w)}}
$$

## Measuring red shift

The precise way--spectral lines
But... takes a long time!

Photometric redshifts
Quick but accuracy limited to $\delta z>.03$


## BAO first measurement

Scaled correlation


Spectroscopic survey of 55000 LRG's from SDSS, <z> = 0.35
(Eisenstein, et al. 2005)

BAO is same physics as CMB but much smaller effect and harder to measure so what's the point?

The point is that it is at very different redshift, $\mathrm{z}<3$ (CMB is $\mathrm{z}=1100$ )

- Stake through the heart of curvature (or discovery!)
-Relevant region for emergence of dark energy and relatively free of astrophysical complications (galaxy counting exeriment)
-Need sub-percent (spectrographic) accuracy on redshift-- photo-z not good enough


## BAO future

## QuickTime ${ }^{\text {TM }}$ and decompressor <br> are needed to see this picture.

Baryon Oscillation Spectrographic Survey (BOSS) - Next step in SDSS
-Big collaboration led by LBNL (David Schlegel)


Stage IV: ADEPT (a JDEM proposal) $1<z<2,30,000$ sq deg

## Weak gravitational Iensing


fis er can
after averaging over the measured ellipticity of many galaxies.

## WL--geometry and structure Dark Energy Signals in the WL Sky



Cosmology changes growth rate of mass structures in the Universe.

## WL tomography



From HST COSMOS field, Massey et al., 2007

## Dark energy current status



> Adding "all" the data: $\mathrm{w}_{0}=-1.04 \pm 0.06$

Still $\Lambda$ after all those years

Assumes flat universe and constant w

## J DEM and BEPAC



NASA to NRC: "Which of these should go first(FY09)?" NRC to NASA: "JDEM" (with LISA 2nd)

## BEPAC considered 3 J DEM candidates

## ADEPT

BAO for $1<z<2,30000$ sq deg

DESTINY<br>la SN using slitless spectrometer<br>Weak lensing over 1000 sq deg

## SNAP <br> 2000 well-measured la SN (imaging + spectro) <br> Weak lensing over 4000 sq deg

BEPAC: importance of "other science"

## J DEM next steps

+ DOE and NASA working to formulate a call for proposals (Announcement of Opportunity[AO] in NASA-speak)
+ AO released in 2008
+ Selection in 2009
+ Launch in 2014
...and in conclusion




## But wait, there's more

+ Last week at the AAS meeting, NASA administrator Michael Griffin gave a speech where he revealed that, in response to the language in the Congressional Omnibus bill, he has asked BEPAC to rank J DEM against AMS


## Tool box for surveying the expansion history

+ Red shift
+ Standard candle (luminosity distance) from Type la SN
+ Standard ruler (CMB and Baryon Acoustic Oscillations)
+ Weak gravitational lensing
+ Standard siren (if I have time)




## WL --current status



Really just getting started. Not a huge impact on cosmology yet Long-term could be the most powerful technique

# Gravitational waves as standard sirens 

LISA<br>Problem for redshift<br>Pointing accuracy is poor<br>$10^{5}$ galaxies in error box

QuickTime ${ }^{\text {TM }}$ and a decompressor
are needed to see this picture.


Binary black hole inspiral is "absolutely calibrated" source strength

## BAO with neutral hydrogen



Or do a 21 cm survey

## CMB, a standard ruler

Flat space?


Moral: For CMB, there is a degeneracy between
Curvature and knowledge of Hubble parameter

Moral 2: Unless you assume curvature is $=0$ on religious (read inflation) grounds, it is a complication so keep it in mind when you see results quoted

## No sensitivity to $w_{a}$ yet

QuickTime ${ }^{\text {TM }}$ and a
decompressor
are needed to see this picture.

```
\[
\frac{a}{a}=H_{0} \sqrt{\Omega_{m} a^{3}+\left(1-\Omega_{m}\right) a^{3(1+w)}}
\]
```

