Cosmic Rays

Miguel Mostafa

Aspen Winter Conferences Particle Physics
January 13-19, 2008

- Brief history of UHECRs
- Particle Astrophysics
- Observation techniques
- Auger latest results
- Auger current analysis
- Conclusions and Prospects

History

- 1912: Victor Hess discovers cosmic rays

\mathbb{U} [History

- What are Cosmic Rays?

The University of Utah

\mathbb{U} History

- 1938: Pierre Auger saw Extensive Air Showers

U History - Science

Cosmic ray shówer

Top of the at

LOW ENERGY NUCLEONIC COMPONENT DISINTEGRATION PRODUCT NEUTRONS DEGENERATE TO "SLOW" NEUTRONS)

\mathbb{U} History

J

- 1946: Rossi \& Zatsepin build first array

The University of Utah

UHistory

- 1962: Linsley et al. see $1^{\text {st }}$ event $\mathrm{E}>10^{20} \mathrm{eV}$

The University of Utah

U History - Science

- 1966: Greisen, Zatsepin, \& Kuzmin predict the GZK suppression

The University of Utah

[Science

the spectrum

- Flux vs. Energy
- Flux per unit:
- Area [m²]
- Solid Angle [sr]
- Time [s]
- Energy [GeV]

UScience
acceleration
mechanisms

- accelerator
- propagation
- composition

\mathbb{U} [science

- account for deflection!

The University of Utah

- We must address:
- Energy distribution
- GZK suppression?
- Need for new physics?
- Directionality
- Known astrophysics?
- New physics?
- Composition
- p, $\gamma, \mathrm{Fe}, \mathrm{n}, \nu, \ldots$?

The University of Utah

@ UHE we can only measure the EAS

(and side effects)

L Detection techniques

- particle counters on the ground

The University of Utah

TTechniques

- AGASA
- 100 km² array
- plastic scintillators

The University of Utah

[Techniques

- AGASA results

L Detection Techniques

- Fluorescence emissions

The University of Utah

\mathbb{U} Techniques

- the Fly's Eye

- the Collaboration

The University of Utah

IT the hybrid concept

Telecoped Mubres qute tikescopes E1ccreillue de $9 x$ ircos collecters eurpentie1sid de 30.15 smictare dedtheterlalume
 dels prote de parl.
 sra is ractare.

Ofhases

- the hybrid detector

The University of Utah

LI Auger

- the hybrid detector

U detecting UHECRs

- FD view

The University of Utah

detecting UHECRs

- hybrid reconst.: all avail pixels and tanks

U hybrid Reconstruction

- reconstruct golden hybrids and subthreshold

The University of Utah

U Auger status

The University of Utah

1 Auger Results

- Anisotropy around the GC at EeV energies

The University of Utah
Astroparticle Physics 27 (2007) 244-253

Auger Results

- Upper limit on photon fraction from FD

Astroparticle Physics 27 (2007) 155-168

1. Auger Results

- Upper limit on photon fraction from SD

1) Auger Analysis

- longitudinal profile reconstruction

3D reconstruction

Auger Analysis

- Elongation Rate

Auger Analysis

- energy calibration

The University of Utah

Auger Results

- largest exposure

Auger Analysis

The University of Utah

[Auger Analysis

- hybrid extension

I astroph implications

1. Auger Results

- an iso-exposure Mollweide map

I Auger Analysis

- auto-correlation

- 100 Mpc horizon maps

VC 4deg reference map

The University of Utah

- Can we say anything about the sources?
- They are not Galactic
- Likely astrophysical
- AGNs are interesting plausible sites
- More data are needed to identify and characterize the sources

["AGN" conclusions

- Have we found the sources of EHECRs?
- The results are certainly interesting if not (yet) statistically compelling
- If/when our correlations are statistically compelling, we will have (arguably) the first experimental feedback on magnetic deflections of extra-galactic CRs
- We will continue our analysis on the everincreasing Auger data set

I Auger Analysis

- vertical vs. horizontal showers

1 Auger Analysis

- neutrino limits

[Auger future - AMIGA

Detector pairs

Auger future

The University of Utah

IT Auger future

- High Elevation Auger Telescopes

Auger future

- simulated nearby event

Simulated shower with core distance $R_{p}=1.2 \mathrm{~km}, \mathrm{E}=10^{17.25} \mathrm{eV}$

- simulated profile
- reconstructed profile

U Auger future

SOUTHEAST COLORADO TOPO MAP Proposed Northern site

- Auger North (proposal in 2008)

Southern site
The University of Utah

Conclusions

- Summary
- largest exposure
- southern sky
- interesting tesults
- Prospects
- novel measurements
- enhance the Southern Observatory
- map sources in the North

U Back up slides

Help is on the way!

The University of Utah

U [more on GzK

- Attenuation length ${ }^{10^{30}}$

\mathbb{U} [more on GZK

total cross section for $\gamma+\mathrm{p}$ collisions:

The University of Utah

more on ER

- $X_{\text {max }}$ and primary mass
primary protons:

$$
\left\langle X_{\max }\right\rangle=D_{10} \lg (E)+\text { const }
$$

superposition model:
$\left\langle X_{\max }\right\rangle=D_{10} \lg (E / A)+$ const
elongation rate theorem:

more on photon fraction

- photon's elongation rate primary protons:

$$
\left\langle X_{\max }\right\rangle=D_{10} \lg (E)+\text { const }
$$

superposition model:

$$
\left\langle X_{\max }\right\rangle=D_{10} \lg (E / A)+\text { const }
$$

elongation rate theorem:

- our event selection

I more on galactic sources

- HESS sources astro-ph/0510397

\mathbb{U} [more on AGNs

- Properties: max @ E/flux reduced by 50\%

The University of Utah

more on AGNs

- full set scan

1 more on HEAT

- combined field of view

The University of Utah

more on the enhancements

