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Higgs as a composite particle

does not suffer from naturalness problems

Example in QCD:
mπ << MP

spin=0 composite states at ΛQCD << MP

ΛQCD MP

αs



mπ < mρ, ma1
, ... << MP

Composite Higgs scenario is inspired by QCD:

The (pseudo)scalars are the lightest resonances

They are Pseudo-Goldstone Bosons

SU(2)L × SU(2)R → SU(2)VGlobal QCD symmetry:
(for two massless quarks)

π
+
, π

−

, π
03 Goldtones:

Not a symmetry of the EW sector, 
and therefore a potential for the pion 

is induced at the loop-level: V (π) = m
2

π
π

2 + ...

Can the light Higgs be a kind of a pion
 from a  new strong QCD-like sector?

Georgi,Kaplan 80s



  1)   Larger global symmetry of the new strong sector:           

4 Goldstones = a doublet of SU(2) = Higgs

SO(5)         SO(4) ~ SU(2) x SU(2)

Differences with QCD:

2)  The Higgs must get a VEV 



EW interactions + Yukawas breaks the global SO(5):

Higgs potential induced by gauge loops + top loops

V (h) = −m
2
h

2 + ...

The Higgs will be light since its mass arises at the one-loop level



Main problem with this scenario:



Lack of predictability !!

Main problem with this scenario:

i.e.  how to calculate within strongly coupled theories 

How to go further:  Calculate spectrum,  check consistency  
with EWPTs,  fermion sector (flavor problem),...



• Little Higgs

• Holographic Higgs:  Extra dimensions 

Recent progress: explicit weakly-coupled examples

Predictive models! 

Agashe, Contino, AP

Arkani-Hamed, Cohen, Katz, Nelson



• Little Higgs

• Holographic Higgs:  Extra dimensions 

Predictive models! 

Agashe, Contino, AP

Arkani-Hamed, Cohen, Katz, Nelson

Lets have a brief look 
at this possibility
and its implications

Recent progress: explicit weakly-coupled examples



Why extra dimensions can give rise to a composite 
Higgs scenario?

An educated answer : AdS/CFT correspondence:  Strongly coupled 4D 
theories are equivalent to 5D weakly-coupled theories  in AdS  

A more pedestrian answer :  Just go on and calculate the Higgs 
properties, e.g.,  form  factors: 

Electromagnetic form factor of the Higgs
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successful exp.!!

Composite state:
(such as pions in QCD)

THE STRONGLY-INTERACTING LIGHT HIGGS

ALEX POMAROL
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We present the effective low-energy lagrangian arising from theories where the electroweak
symmetry breaking is triggered by a light composite Higgs, which emerges from a strongly-
interacting sector as a pseudo-Goldstone boson. This lagrangian proves to be useful for LHC
and ILC phenomenology that includes the study of high-energy longitudinal vector boson
scattering, strong double-Higgs production and anomalous Higgs couplings.

1 Introduction

The Standard Model (SM) of elementary particles, as we know it today, is not a complete theory.
As it is well known, if we calculate the amplitude of the process WLWL → WLWL we find that it
grows with the energy as g2E2/M2

W violating unitarity at energies around 4πv ∼ 1 TeV. What
unitarize this amplitude at high energy? This is the first priority question to be addressed at
the LHC.

An example of a possible UV-complition of the SM can be found in QCD. The pion ampli-
tudes are unitarized by extra resonances arising from the strongly interacting SU(3)c. Never-
theless, this Higgsless approach has to face the present electroweak precision test (EWPT) and,
in its simple incarnation, technicolor models, it fails to pass them. The reason is that the new
resonances responsible for unitarizing the SM amplitudes have masses at around 1 TeV and give
large (tree-level) contribution to electroweak observables that have not been observed.

A second option arises from the Higgs mechanism. The presence of a scalar Higgs cures the
SM amplitudes from the bad high-energy behaviour and, therefore, allow the SM to be extrapo-
lated to very high energies. It is hard to believe that nature is not using such a simple mechanism
to give us a UV completed theory of electroweak interactions. Nevertheless, naturalness criteria,
stop us from considering the Higgs mechanism as the last ingredient to be incorporated to the
SM at the electroweak scale. Why the Higgs mass, that determines the electroweak scale, is
so small compare with, for example, the Planck scale? If we want to answer this question, we
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Higgs inside 
a 5D curved space:
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A more pedestrian answer :  Just go on and calculate the Higgs 
properties such as form  factors: 
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A more pedestrian answer :  Just go on and calculate the Higgs 
properties such as form  factors: 

The extra dim must be warped!!
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Minimal 5D composite Higgs model

AdS5

SO(5)⊗ U(1)

Fermions ∈ 5 of SO(5)

UV-bound.

SU(2)L⊗ U(1)Y

IR-bound.

SO(4)⊗ U(1)

Parameters: g5D, L and 5D fermion masses Agashe, A.P.,Contino

Minimal 5D composite Higgs

Agashe,Contino,A.P.

extra dim

The bosonic sector:



Why this symmetry breaking pattern?

We are in 5D: AM = (Aµ,A5)

Massless boson spectrum:

• Aµ of SU(2)L⊗U(1)Y = SM Gauge bosons

• A5 of SO(5)/SO(4) = 2 of SU(2)L = SM Higgs

↪→ Higgs-gauge unification

Higgs mass protected by 5D gauge invariance!

Hosotani mechanism

A5 → A5 + ∂5θ

 shifts as a PGB



.

Minimal 5D composite Higgs model

AdS5

SO(5)⊗ U(1)

Fermions ∈ 5 of SO(5)

UV-bound.

SU(2)L⊗ U(1)Y

IR-bound.

SO(4)⊗ U(1)

Parameters: g5D, L and 5D fermion masses Agashe, A.P.,Contino

 Minimal 5D composite Higgs

Agashe,Contino,A.P.

extra dim

The fermionic sector: more model dependent



Predictions

Light Higgs KK resonances
for each SM field

in complete reps of the 
bulk group SO(5)

+

top:   5 = 27/6 + 21/6 + 12/3

exotic states of Q=5/3   



Spectrum

110-180 GeV

500-1500 GeV

2.5 TeV

Higgs

12/3

gauge KK

color fermionic KK}21/6

27/6

4.2 TeV graviton KK

the higher the spin, 
the higher the mass



 
What to expect at the LHC 

and, maybe, ILC?



Direct:    Detection of the  heavy KK-particles

Type of searches:

Indirect:    The Higgs behaves as a composite particle:    
Expected deviations from a SM elementary Higgs 

             Very similar to detecting the 
“hadrons” of  TC models
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TABLE I: Selection cuts in the semileptonic tt̄ channel.

3. Differential cross section

The SM top pair production rate falls steeply as a func-
tion of the invariant mass. The uncertainty from PDF’s
in this shape is far less than that in the total cross-section.
Hence we look for a signal from KK gluons in the differ-
ential tt̄ cross-section as opposed to simply counting the
total number of tt̄ events. We do not expect a sharp
resonance in this distribution due to the large width of
the KK gluon, but we do obtain a statistically significant
“bump” as discussed below.

The differential cross section as a function of mtt̄ is
shown in Figs. 4 and 5 for MKKG = 3 TeV produced
at the LHC. In Fig. 4 we compare the total (signal +
background) distribution to the SM (background) distri-
bution, based on a partonic-level analysis. In Fig. 5, we
focus on the area near the peak and we consider con-
tributions from the reducible background (from Wjj).
We show the particle level results and the correspond-
ing statistical uncertainties of event reconstruction. The
predictions for the SM and SM+RS models, based on
partonic-level analysis (same as in Fig. 4), are also shown
for comparison. We see that, since the partonic and par-
ticle level data are consistent with each other, we do not
expect a large bias in the ability to reconstruct the KKG
mass.
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FIG. 4: Invariant tt̄ mass distribution for MKKG = 3 TeV
production at the LHC. The solid curve presents sig-
nal+background distribution, while the dashed curve presents
the tt̄ SM background, based on partonic level analysis.

In the following we describe the reconstruction effi-
ciency and how we estimate our signal to background
ratio and the sensitivity to the KK gluon mass based on
this analysis. Following [13], we assume a 20% efficiency

 invariant mass / GeVtt 

2000 2500 3000 3500 4000

-1
#

 e
v

e
n

ts
 /

 2
0

0
 G

e
V

 /
 1

0
0

 f
b

0

10

20

30

40

50

60
 mass distributiontt 

total reconstructed

total partonic

W+jets background

SM prediction

FIG. 5: Invariant tt̄ mass distribution for 3 TeV KKG, fo-
cusing on the area near the peak. The error bars corre-
spond to statistical uncertainties and represent our particle
level analysis. The dotted line stands for the SM predic-
tion. The dashed-dotted line shows the Wjj background.
The dashed line shows the signal+background from Sherpa’s
partonic level analysis.

for tagging b-jets (εb), independent of the b-jet energy.
Our particle level study shows that the efficiency of the
additional cuts described, εcut, in Table I for the recon-
struction of tt̄ system in the mass window around KKG
is about 20(21)% for mtt̄ = 3(4)TeV. We find that for
the SM the reconstruction efficiency is lower, 9(10)% for
mtt̄ = 3(4) TeV. The signal+background (BG+KKG)
and background (BG) reconstruction efficiencies differ
because the BG and BG+KKG events have different
kinematics. The background is dominated by gg fusion
events which are more forwardly-peaked in the top pair
center of mass (cm) frame than the qq̄ fusion events.
Hence, the gg events have a smaller PT

9 than the qq̄
events. Since KK gluon signal comes only from qq̄ fu-
sion, the pT cut on the top-quark reduces background
more than the signal.

In addition, the branching ratio for the lj decay is given
by BRlj = 2 × 2/9 × 2/3 " 0.3. The total efficiency is
given by BRlj × εcut × εb ∼ 1%.

We estimate the statistical significance of our signal
by looking at the bump. An invariant tt̄ mass window
cut 0.85MKKG < Mtt̄ < 1.5MKKG is applied. The
lower bound corresponds roughly to the width. The
upper bound is not particularly important due to the
steep falloff in cross section. Below the MKKG thresh-
old, the signal+background distribution is actually be-
low the background one due to destructive interference.
Therefore, we choose an asymmetric mass window cut.
We estimate the ratio of the signal, S, to the statistical
error in the the background,

√
B, via our particle level

9 Note that, inside the mass window, the total momentum/energy
of each top quark in cm frame is roughly fixed at MKKG/2.

Direct Searches

g

g

t

t

gKK

Wlong Wlong

qKK

1) KK of the gluon:

Agashe et al
2) KK of the top:

Possible 
up to 4 TeV

feasible to see up to 1-2 TeV

b, tb, t



q̄ q′

g

g

T̄5/3

q′

q̄

g

W−

W+ b

b̄

t̄

l+ ν
l+ ν

t
T5/3

W−

W+

l+ q′

g

g

B̄

ν

q̄

g

W−

W+ b

b̄

t̄

q̄ q′ l+ ν

t

B

W+

W−

Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L $∂ qL + t̄R $∂ tR

+ Tr
{

Q̄ ( $∂ − MQ)Q
}

+ ¯̃T ( $∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.

(2)

3

If the KK-fermion are light, they can be double produced:

Contino,Servant

masses up to 1 TeV reached with an integrated luminosity of 20/fb



Find the effective theory after integrating out the heavy states:

(equivalent of the chiral lagrangian in QCD)

LSM+H + higher dimensional operators

what are they?

Indirect Searches

Model independent approach:
Giudice,Grojean,A.P.,Rattazzi



Parametric counting for the higher-dim operator’s coefficients:

TREE-LEVEL:

subleading:

leading:

ONE-LOOP:

e.g.

e.g.

H H

e.g.   those suppressed by the Golstone symmetry
g′2

16π2

g2

m2
ρ

H†HGµνGµν

1

f2
(∂µH2)2

∂
2

µ

H/fH/f

ρ

1

m2
ρ

(H†
D

µ
H)(∂ν

Bµν)

f
mρ

=   decay constant

=   resonance  mass
Physics of two scales: {



derivatives and field strengths

O2W = (DµWµν)
i(DρW

ρν)i O2B = (∂µBµν)(∂ρB
ρν) O2g = DµGa

µνDρG
a ρν (13)

O3W = εijkW
i
µ

ν
W j

νρW
k ρµ O3g = fabcG

a
µ

νGb
νρG

c ρµ. (14)

As we show in the appendix A (see eq. (118)), the operators on the first line can be generated

at tree level through the exchange of massive vectors transforming respectively as a weak

triplet, as a singlet and as a color octet. Their coefficient is therefore in general of order

1/(gρmρ)2. The operators in the second line cannot arise at tree level in minimally coupled

theories. For instance O3W contributes to the magnetic dipole and to electric quadrupole of

the W . They are thus generally expected with a coefficient ∼ 1/(4πmρ)2.

2.3 The SILH effective Lagrangian

We now basically have all the ingredients to write down the low-energy dimension-6 effective

Lagrangian. We will work under the assumption of a minimally coupled classical lagrangian

at the scale mρ.

Using the rules described in sect. 2.2, we obtain a low-energy effective action for the

leading dimension-6 operators involving the Higgs field of the form

LSILH =
cH

2f 2
∂µ

(
H†H

)
∂µ

(
H†H

)
+

cT

2f 2

(
H†←→DµH

)(
H†←→D µH

)

−
c6λ

f 2

(
H†H

)3
+

(
cyyf

f 2
H†Hf̄LHfR + h.c.

)

+
icW g

2m2
ρ

(
H†σi←→DµH

)
(DνWµν)

i +
icBg′

2m2
ρ

(
H†←→DµH

)
(∂νBµν)

+
icHW g

16π2f 2
(DµH)†σi(DνH)W i

µν +
icHBg′

16π2f 2
(DµH)†(DνH)Bµν

+
cγg′2

16π2f 2

g2

g2
ρ

H†HBµνB
µν +

cgg2
S

16π2f 2

y2
t

g2
ρ

H†HGa
µνG

aµν . (15)

We will later discuss the lagrangian terms that purely involve the vector bosons. The coupling

constants ci are pure numbers of order unity. For phenomenological applications, we have

switched to a notation in which gauge fields are canonically normalized, and gauge couplings

explicitly appear in covariant derivatives. Also, we recall the definition H†←→D µH ≡ H†DµH−
(DµH†)H .

In what follows we will comment on the operators in eq. (15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz
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the W . They are thus generally expected with a coefficient ∼ 1/(4πmρ)2.
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Definite modifications of Higgs decay widths: 

ξ ≡

v2

f2

Measuring the compositeness of the Higgs:

The new interactions in Lh, see eq. (71), modify the SM predictions for Higgs production

and decay. At quadratic order in h, the coefficient cH generates an extra contribution to

the Higgs kinetic term. This can be reabsorbed by redefining the Higgs field according to

h → h/
√

1 + ξcH (this linear field redefinition is all that we need as long as we are looking at

physical quantities involving only one Higgs, while for other quantities like the Higgs cubic

self-coupling, non-linear terms in the field redefinition have to be added, see appendix B for

details). The effect of cH is then to renormalize by a factor 1− ξcH/2, with respect to their

SM value, the couplings of the canonical field h to all other fields. Notice that the Higgs

field redefinition also shifts the value of mH (but not of v or mf ).

We can express the modified Higgs couplings in terms of the decay widths in units of the

SM prediction, expressed in terms of physical pole masses,

Γ
(
h → f f̄

)
SILH

= Γ
(
h → f f̄

)
SM

[1 − ξ (2cy + cH)] (79)

Γ
(
h → W+W−

)
SILH

= Γ
(
h → W+W (∗)−

)
SM

[
1 − ξ

(
cH −

g2

g2
ρ

ĉW

)]
(80)

Γ (h → ZZ)SILH = Γ
(
h → ZZ(∗)

)
SM

[
1 − ξ

(
cH −

g2

g2
ρ

ĉZ

)]
(81)

Γ (h → gg)SILH = Γ (h → gg)SM

[
1 − ξ Re

(
2cy + cH +

4y2
t cg

g2
ρIg

)]
(82)

Γ (h → γγ)SILH = Γ (h → γγ)SM



1 − ξ Re



 2cy + cH

1 + Jγ/Iγ
+

cH − g2

g2
ρ
ĉW

1 + Iγ/Jγ
+

4g2

g2
ρ
cγ

Iγ + Jγ







 (83)

Γ (h → γZ)SILH = Γ (h → γZ)SM



1 − ξ Re



 2cy + cH

1 + JZ/IZ
+

cH − g2

g2
ρ
ĉW

1 + IZ/JZ
+

4cγZ

IZ + JZ







 .

(84)

Here we have neglected in Γ(h → W+W−, ZZ)SILH the subleading effects from cHW and

cHB, which are parametrically smaller than a SM one-loop contribution. The loop functions

I and J are given in appendix C.

The leading effects on Higgs physics, relative to the SM, come from the three coefficients

cH , cy, cγZ , although cγZ has less phenomenological relevance since it affects only the decay

h → γZ. The rules of SILH select the operators proportional to cH and cy as the most

important ones for LHC studies, as opposed to totally model-independent operator analy-

ses [20, 21, 22] which often lead to the conclusion that the dominant effects should appear in

the vertices hγγ and hgg, since their SM contribution occurs only at loop level. Therefore,

we believe that an important experimental task to understand the nature of the Higgs boson

25



Deviations from the SM:

Visible at LHC?



at LHC can measure                           up to 20-40 % 

by studying rates for Higgs production and decay

cy
v2

f2
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f2
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...certainly if they  are of order 20-40%

ILC  would be a perfect machine to test these scenarios:
effects could be measured up to a few %



Best test of composite Higgs:  WW-scattering

Therefore, although the Higgs is light, we obtain strong WW scattering at high energies.

From the operator OH ≡ ∂µ(H†H)∂µ(H†H) in eq. (15), using the equivalence theorem

[27], it is easy to derive the following high-energy limit of the scattering amplitudes for

longitudinal gauge bosons

A
(
Z0

LZ0
L → W+

L W−
L

)
= A

(
W+

L W−
L → Z0

LZ0
L

)
= −A

(
W±

L W±
L → W±

L W±
L

)
=

cHs

f 2
, (85)

A
(
W±Z0

L → W±Z0
L

)
=

cHt

f 2
, A

(
W+

L W−
L → W+

L W−
L

)
=

cH(s + t)

f 2
, (86)

A
(
Z0

LZ0
L → Z0

LZ0
L

)
= 0. (87)

This result is correct to leading order in s/f 2, and to all orders in ξ in the limit gSM = 0,

when the σ model is exact. The absence of corrections in ξ follows from the non-linear

symmetry of the σ model, corresponding to the action of the generator Th, associated with

the neutral Higgs, under which v shifts. Therefore we expect that corrections can arise only

at O(s/m2
ρ). The growth with energy of the amplitudes in eqs. (85)–(87) is strictly valid

only up to the maximum energy of our effective theory, namely mρ. The behaviour above

mρ depends on the specific model realization. In the case of the Little Higgs, we expect

that the amplitudes continue to grow with s up to the cut-off scale Λ. In 5D models, like

the Holographic Goldstone, the growth of the elastic amplitude is softened by KK exchange,

but the inelastic channel dominate and strong coupling is reached at a scale ∼ 4πmρ/gρ.

Notice that the result in eqs. (85)–(87) is exactly proportional to the scattering amplitudes

obtained in a Higgsless SM [27]. Therefore, in theories with a SILH, the cross section at the

LHC for producing longitudinal gauge bosons with large invariant masses can be written as

σ (pp → VLV ′
LX)cH

= (cHξ)2 σ (pp → VLV ′
LX) #H , (88)

where σ(pp → VLV ′
LX) #H is the cross section in the SM without Higgs, at the leading order

in s/(4πv)2. With about 200 fb−1 of integrated luminosity, it should be possible to identify

the signal of a Higgsless SM with about 30–50% accuracy [28, 29]. This corresponds to a

sensitivity up to cHξ % 0.5–0.7.

In the SILH framework, the Higgs is viewed as a pseudoGoldstone boson and therefore

its properties are directly related to those of the exact (eaten) Goldstones, corresponding

to the longitudinal gauge bosons. Thus, a generic prediction of SILH is that the strong

gauge boson scattering is accompanied by strong production of Higgs pairs. Indeed we find

that, as a consequence of the O(4) symmetry of the H multiplet, the amplitudes for Higgs

pair-production grow with the center-of-mass energy as eq. (85),

A
(
Z0

LZ0
L → hh

)
= A

(
W+

L W−
L → hh

)
=

cHs

f 2
. (89)
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Composite Higgs suggests Composite top
Since large top mass implies large coupling of the top 
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Composite Higgs suggests Composite top
Since large top mass implies large coupling of the top 

to the Higgs (strong sector)   

After integrating out the heavy resonances:

NEW DIMENSION-6 OPERATORS

leading terms:
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5. Strongly-interacting top quark

In section 3 we have seen that, in some explicit realizations of the SILH, the top quark is

required to be strongly coupled to the resonances of the electroweak-breaking sector. Here

we want to study, in a model-independent way, the phenomenological implications of this

strongly-coupled top quark, much in the same spirit of section 2 for the case of the Higgs

boson.

Let us first consider the case in which, in addition to the Higgs, the right-handed top

also belongs to the strongly-coupled sector. The low-energy effective Lagrangian can be

written by generalizing the rules 1, 2 and 3 of section 2.2, noticing that each tR leg added to

leading interactions carries an extra factor 1/(fm1/2
ρ ). We find three dimension-6 operators

suppressed by 1/f2 and involving tR:

ctyt

f2
H†Hq̄LH̃tR + h.c. +

icR

f2
H†DµHt̄RγµtR +

c4t

f2
(t̄RγµtR)(t̄RγµtR) . (5.1)

We are not considering dimension-6 operators suppressed by 1/m2
ρ since their effects are

smaller than those in eq. (5.1) for large gρ. The first term of eq. (5.1) was already included

in eq. (2.15). Nevertheless, here it is only present for the top quark and therefore it violates

the universality of cy. The difference ct − cy can be viewed as originating from an insertion

of H†H/f2 on the tR line. The second term of eq. (5.1) violates the custodial symmetry,

and therefore it generates a contribution to T̂ at the one-loop level

T̂ ∼
Ncc2

Rv2Λ2

16π2f4
= 0.02 c2

R

(
Λ

f

)2

ξ , (5.2)

where Λ is the scale that cuts off the one-loop momentum divergence. In models in which

Λ ∼ mρ the 95% CL bound T̂ <∼ 0.002 translates, via eq. (5.2), into a severe upper bound

on c2
Rξ. This bound on cR can be easily satisfied in models in which the strong sector

preserves a custodial symmetry under which tR transforms as a singlet. This guarantees

cR = 0 at tree-level. Another possibility to evade the bound on cR is to reduce the scale

Λ in eq. (5.2). This can be achieved in models in which tR transforms non-trivially under

the custodial group as discussed in section 3. In this case Λ ∼ mcust where mcust is the

mass of the custodial partners of the tR. Assuming mcust # mρ we can satisfy the bound

from T̂ even if cR ∼ 1.

Similarly, we can consider the case in which tL and H are strongly coupled. We

have now the following 1/f2 dimension-6 operators in the low-energy Lagrangian involving

qL = (tL, bL):

cqyb

f2
H†Hq̄LHbR +

cqyt

f2
H†Hq̄LH̃tR + h.c. +

ic(1)
L

f2
H†DµHq̄LγµqL

+
ic(3)

L

f2
H†σiDµHq̄LγµσiqL +

c4q

f2
(q̄LγµqL)(q̄LγµqL) . (5.3)

The possibility of having a strongly-coupled qL has, however, severe constraints from flavor

physics due to bL. For example, the operator proportional to c4q in eq. (5.3) contributes
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Experimental implications of the compositeness of the top
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written by generalizing the rules 1, 2 and 3 of section 2.2, noticing that each tR leg added to

leading interactions carries an extra factor 1/(fm1/2
ρ ). We find three dimension-6 operators

suppressed by 1/f2 and involving tR:

ctyt

f2
H†Hq̄LH̃tR + h.c. +

icR

f2
H†DµHt̄RγµtR +

c4t

f2
(t̄RγµtR)(t̄RγµtR) . (5.1)

We are not considering dimension-6 operators suppressed by 1/m2
ρ since their effects are

smaller than those in eq. (5.1) for large gρ. The first term of eq. (5.1) was already included

in eq. (2.15). Nevertheless, here it is only present for the top quark and therefore it violates

the universality of cy. The difference ct − cy can be viewed as originating from an insertion

of H†H/f2 on the tR line. The second term of eq. (5.1) violates the custodial symmetry,

and therefore it generates a contribution to T̂ at the one-loop level

T̂ ∼
Ncc2

Rv2Λ2

16π2f4
= 0.02 c2

R

(
Λ

f

)2

ξ , (5.2)

where Λ is the scale that cuts off the one-loop momentum divergence. In models in which

Λ ∼ mρ the 95% CL bound T̂ <∼ 0.002 translates, via eq. (5.2), into a severe upper bound

on c2
Rξ. This bound on cR can be easily satisfied in models in which the strong sector

preserves a custodial symmetry under which tR transforms as a singlet. This guarantees

cR = 0 at tree-level. Another possibility to evade the bound on cR is to reduce the scale

Λ in eq. (5.2). This can be achieved in models in which tR transforms non-trivially under

the custodial group as discussed in section 3. In this case Λ ∼ mcust where mcust is the

mass of the custodial partners of the tR. Assuming mcust # mρ we can satisfy the bound

from T̂ even if cR ∼ 1.

Similarly, we can consider the case in which tL and H are strongly coupled. We

have now the following 1/f2 dimension-6 operators in the low-energy Lagrangian involving

qL = (tL, bL):

cqyb

f2
H†Hq̄LHbR +

cqyt

f2
H†Hq̄LH̃tR + h.c. +

ic(1)
L

f2
H†DµHq̄LγµqL

+
ic(3)

L

f2
H†σiDµHq̄LγµσiqL +

c4q

f2
(q̄LγµqL)(q̄LγµqL) . (5.3)

The possibility of having a strongly-coupled qL has, however, severe constraints from flavor

physics due to bL. For example, the operator proportional to c4q in eq. (5.3) contributes
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5. Strongly-interacting top quark

In section 3 we have seen that, in some explicit realizations of the SILH, the top quark is

required to be strongly coupled to the resonances of the electroweak-breaking sector. Here

we want to study, in a model-independent way, the phenomenological implications of this

strongly-coupled top quark, much in the same spirit of section 2 for the case of the Higgs

boson.

Let us first consider the case in which, in addition to the Higgs, the right-handed top

also belongs to the strongly-coupled sector. The low-energy effective Lagrangian can be
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and therefore it generates a contribution to T̂ at the one-loop level
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where Λ is the scale that cuts off the one-loop momentum divergence. In models in which

Λ ∼ mρ the 95% CL bound T̂ <∼ 0.002 translates, via eq. (5.2), into a severe upper bound

on c2
Rξ. This bound on cR can be easily satisfied in models in which the strong sector

preserves a custodial symmetry under which tR transforms as a singlet. This guarantees

cR = 0 at tree-level. Another possibility to evade the bound on cR is to reduce the scale

Λ in eq. (5.2). This can be achieved in models in which tR transforms non-trivially under

the custodial group as discussed in section 3. In this case Λ ∼ mcust where mcust is the

mass of the custodial partners of the tR. Assuming mcust # mρ we can satisfy the bound

from T̂ even if cR ∼ 1.

Similarly, we can consider the case in which tL and H are strongly coupled. We

have now the following 1/f2 dimension-6 operators in the low-energy Lagrangian involving

qL = (tL, bL):

cqyb

f2
H†Hq̄LHbR +

cqyt

f2
H†Hq̄LH̃tR + h.c. +

ic(1)
L

f2
H†DµHq̄LγµqL

+
ic(3)

L

f2
H†σiDµHq̄LγµσiqL +

c4q

f2
(q̄LγµqL)(q̄LγµqL) . (5.3)

The possibility of having a strongly-coupled qL has, however, severe constraints from flavor

physics due to bL. For example, the operator proportional to c4q in eq. (5.3) contributes
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8 Top quark compositeness

where σNP+SM = σ(pp → ALL → tt̄tt̄) and σNP = σ(pp → g(1) → tt̄tt̄) (being L the integrated
luminosity, expected to be L = 100 fb−1 in a few years of runs at LHC), by means of applying several
cuts on the tops.

Due to the strong coupling of the tops with the KK gluon, we expect the tt̄ pair coming from the
decay of the g(1) to have large transversal momenta. In fact we will think of the top quarks with larger
pT as those with larger probability of having interacted through the new four fermion interaction.
For this reason we chose pT as the ordering function of our events at the parton level. Hence, taking
pT (t1) > pT (t2) and the same for the antitops, we identify the top and antitop with smaller pT as the
spectator tops and those with larger pT as the scattered tops. The same ordering function will be
used for the background process, but in principle no differences arise between the tops apart from the
consequences of the ordering function4. Regarding the latter we have to take into account that this
ordering function could be not appropriate for some observables, leading to wrong conclusions about
the process.

In order to identify the best cuts to apply on several kinematical variables, we plot the normalized
differential cross section for the standard model background (SM) versus the new physics signal (NP),
1
σ

dσ
dx . All the results correspond to the reference value f = 500 GeV. First we plot in Figure 3.4 the

normalized differential cross section in terms of the invariant mass of the scattered top pair m(t1, t̄1).
As expected the NP cross section decreases slower than the one from SM because the new interaction.
We can use the information from this graphic to impose cuts on the invariant mass of these two tops.
We choose m(t1, t̄1) > 1 TeV as a reference cut value, although a more detailed analysis could maxi-
mize the efficiency of this cut.
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Figure 3.1: Normalized differential cross section for the signal (NP) and the background (SM) versus the invariant
mass of the scattered top pair m(t1, t̄1).

Another useful observable is the transversal momentum pT distribution of the scattered (anti)top.
Figure 3.2 shows that around 0.5 TeV the NP process becomes relatively more important than the SM

4In the SM case we will also talk about the top and antitop with greater pT as scattered tops, although in this case
there is no such strong scattering.
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where σNP+SM = σ(pp → ALL → tt̄tt̄) and σNP = σ(pp → g(1) → tt̄tt̄) (being L the integrated
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Another useful observable is the transversal momentum pT distribution of the scattered (anti)top.
Figure 3.2 shows that around 0.5 TeV the NP process becomes relatively more important than the SM

4In the SM case we will also talk about the top and antitop with greater pT as scattered tops, although in this case
there is no such strong scattering.
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5. Strongly-interacting top quark

In section 3 we have seen that, in some explicit realizations of the SILH, the top quark is

required to be strongly coupled to the resonances of the electroweak-breaking sector. Here

we want to study, in a model-independent way, the phenomenological implications of this

strongly-coupled top quark, much in the same spirit of section 2 for the case of the Higgs

boson.

Let us first consider the case in which, in addition to the Higgs, the right-handed top

also belongs to the strongly-coupled sector. The low-energy effective Lagrangian can be

written by generalizing the rules 1, 2 and 3 of section 2.2, noticing that each tR leg added to

leading interactions carries an extra factor 1/(fm1/2
ρ ). We find three dimension-6 operators

suppressed by 1/f2 and involving tR:

ctyt

f2
H†Hq̄LH̃tR + h.c. +

icR

f2
H†DµHt̄RγµtR +

c4t

f2
(t̄RγµtR)(t̄RγµtR) . (5.1)

We are not considering dimension-6 operators suppressed by 1/m2
ρ since their effects are

smaller than those in eq. (5.1) for large gρ. The first term of eq. (5.1) was already included

in eq. (2.15). Nevertheless, here it is only present for the top quark and therefore it violates

the universality of cy. The difference ct − cy can be viewed as originating from an insertion

of H†H/f2 on the tR line. The second term of eq. (5.1) violates the custodial symmetry,

and therefore it generates a contribution to T̂ at the one-loop level

T̂ ∼
Ncc2

Rv2Λ2

16π2f4
= 0.02 c2

R

(
Λ

f

)2

ξ , (5.2)

where Λ is the scale that cuts off the one-loop momentum divergence. In models in which

Λ ∼ mρ the 95% CL bound T̂ <∼ 0.002 translates, via eq. (5.2), into a severe upper bound

on c2
Rξ. This bound on cR can be easily satisfied in models in which the strong sector

preserves a custodial symmetry under which tR transforms as a singlet. This guarantees

cR = 0 at tree-level. Another possibility to evade the bound on cR is to reduce the scale

Λ in eq. (5.2). This can be achieved in models in which tR transforms non-trivially under

the custodial group as discussed in section 3. In this case Λ ∼ mcust where mcust is the

mass of the custodial partners of the tR. Assuming mcust # mρ we can satisfy the bound

from T̂ even if cR ∼ 1.

Similarly, we can consider the case in which tL and H are strongly coupled. We

have now the following 1/f2 dimension-6 operators in the low-energy Lagrangian involving

qL = (tL, bL):

cqyb

f2
H†Hq̄LHbR +

cqyt

f2
H†Hq̄LH̃tR + h.c. +

ic(1)
L

f2
H†DµHq̄LγµqL

+
ic(3)

L

f2
H†σiDµHq̄LγµσiqL +

c4q

f2
(q̄LγµqL)(q̄LγµqL) . (5.3)

The possibility of having a strongly-coupled qL has, however, severe constraints from flavor

physics due to bL. For example, the operator proportional to c4q in eq. (5.3) contributes
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Conclusions

Ligh Higgs look for supersymmetry

.. but also, it is possible:

Ligh Higgs not look for supersymmetry, but 
for extra resonances: G’,W’ Z’,t’,...

Higgs can be composite:
In this case we expect deviations from a point-like Higgs 

• Precise effects on Higgs decays, strong  WW-scattering, 
strong WW        hh 
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Figure 1: The wave functions of the left-handed quark zero modes q(0)
i and the first

KK state, q(1)
1 , of Q1 for the parameters of eq. (3.24).

In our numerical analysis we generate N = 25000 random sets of up and down-
type Yukawa couplings and diagonalize the emerging mass matrices (2.17). We
require the averaged fermion masses and mixings to fit the experimental data, using
the logarithmic average of a quantity X

〈X〉 = exp

(

N
∑

i

ln(Xi)

N

)

. (3.23)

Taking 2/3 < |lij | < 4/3 and random phases from 0 to 2π, we find the “most
natural” locations

cQ1 = 0.643, cD1 = 0.643, cU1 = 0.671,

cQ2 = 0.583, cD2 = 0.601, cU2 = 0.528,

cQ3 = 0.317, cD3 = 0.601, cU3 = −0.460. (3.24)

The wave functions of the left-handed quark zero modes and the first excited state
of Q1 are shown in fig. 1. We fix the relative positions of Q1 and Q2 by fitting |Vus|,
while |Vcb| determines the relative positions of Q2 and Q3. The Jarlskog invariant
J = Im(VcsV ∗

usVudV ∗
cd) [25] and |Vub| are then fixed as well. Note that the the CKM

mixings are determined by the locations of the left-handed quarks. We then use
the locations of the right-handed quarks to fit the quark masses. Taking the quark
locations (3.24), we find for the averages

mu = 2.0 MeV, mc = 506 MeV, mt = 144 GeV,

md = 4.0 MeV, ms = 58 MeV, mb = 2.2 GeV,

|Vus| = 0.222, |Vcb| = 0.040, |Vub| = 0.0088,

J = 3.1 × 10−5.

(3.25)

7

exchange of KK gluons [38]. Excited gluons have flavor non-universal couplings to
fermions like the KK states of the weak gauge bosons and induce flavor violating
couplings analogous to those of eq. (5.31). The gluon zero modes couple universally
and therefore do not mediate flavor changing interactions.

For the quark locations of eq. (3.24) we obtain the following contributions of first
level of KK gluons and the Z boson zero mode

gluon Z exp.

∆mK : 1.5 × 10−14 1.2 × 10−17 3.5 × 10−12

∆mB : 5.1 × 10−11 3.0 × 10−14 3.2 × 10−10

∆mD : 3.8 × 10−13 5.2 × 10−15 4.6 × 10−11

εK : 1.1 × 10−3 1.1 × 10−6 2.3 × 10−3.

(5.41)

The meson mass splittings are given in units of MeV. In eq. (5.41) we give results
averaged over random sets of Yukawa couplings 2/3 < |lij| < 4/3. As in the case
of flat extra dimensions [38] the dominating contributions come from the exchange
of KK gluons. KK states of the Z boson give only an about ten percent correction
to the zero mode exchange. In the computation of the fermion mass eigenstates we
have included the first level of KK states. Compared to using only fermion zero
modes the gluon contribution to εK is enhanced by a factor of two. The meson mass
splittings are less sensitive to whether or not KK fermions are included. The neglect
of higher KK levels amounts to an uncertainty of order unity in our results.

The contributions to meson mass splittings we find are much smaller than the
experimental values [24] listed in the last column of eq. (5.41). The KK gluon
contribution to εK comes rather close to the observed value. About one third of
the random sets of Yukawa couplings we tested gave εK > 2.3 × 10−3, which is still
acceptable. In ref. [17] KK contributions to b → sγ were considered. For the quark
locations of eq. (3.24) a bound on the KK scale of about 5 TeV was found. From

the the process K+ → π+νν̄ the limit on the Z coupling |X d(0)
L,1,2| < 5.1 × 10−6 was

obtained in ref. [18]. We find a considerably lower value of 〈|X d(0)
L,1,2|〉 = 2.2 × 10−7.

Our approach to fermion masses and mixings is therefore nicely compatible with
experimental constraints on flavor violation.

We stress that our results are very different from models where the fermions mass
pattern is explained by flavor-dependent fermion locations in one or more universal
flat extra dimensions. There flavor violation, in particular kaon mixing, leads to
very restrictive bounds on the KK scale, MKK >∼ 103 TeV [38], disfavoring these
models as a solution to the the gauge hierarchy problem. Recently it was shown
that models constructed from intersecting D-branes suffer from a similar problem
[39]. The crucial difference lies in the wave functions of the KK gauge bosons. With
a warped extra dimension the gauge boson wave functions are almost constant away
from the TeV-brane. Therefore the gauge couplings of KK gauge bosons are nearly
universal for fermions localized somewhat towards the Planck-brane (c > 1/2) as

17

From 5D masses of order one (in units of the AdS curvature)
Huber

... one can fit all the SM fermionic spectrum

Flavor violations: Surprisingly, and contrary to flat space, 
they are smaller than the experimental bounds:

for KK-masses ~ TeV

from a 5D perspective no flavor structure
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