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•Assume the existence of a sector with a non-trivial 
conformal fixed point e.g. SQCD, Banks-Zaks, ...
•Couple it in the UV to the SM through exchange of a 
heavy state

SM
Hidden
Sector

Z ′
→ 1

M l+dUV −4
OSMOUV

•Evolve down to low energies

C ΛdUV −dU
U

M l+dUV −4
OSMOIR

Georgi, 2007 



UPS Two point function

Entirely determined by scale invariance:

with

AdU =
4π5/2

(2π)2dU

Γ(dU + 1/2)
Γ(dU − 1)Γ(2dU )

∫
d4 xeiP x〈0|TOIR(x)OIR(0)|0〉 =

∫
dM2

2π
ρ(M2)

i

P 2 − M2 + iε

ρ(M2) =
∫

λ
2π δ(M2 − M2

λ)|〈0|OIR(0)|λ〉|2

= AdU θ(P 0)θ(P 2)(P 2)dU−2

∆(P 2) =
AdU

2 sin(dUπ)
(−P 2)dU−2



Phase Space

This is the phase space for      (non-integer) number of 
particles

dU

Now we are free to calculate...

dΦ = AdU θ(p0)θ(p2)(p2)dU−2 d4 p

(2π)4
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Assume        is SM and UPS singletOdU (cf Cacciapaglia, Marandella and Terning)

OH2

Λd−2

OFµνFµν

Λd

•Scalar unparticles
OHf̄LfR

Λd

Oµf̄γµf

Λd−1

•Vector unparticles

OµH†DµH

Λd−1           ,               , etc

•Tensor unparticles

OµνHf̄LσµνfR

Λd
           ,                   , etcOµνH†DµDνH

Λd
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Operator in           
representation of Lorentz 

group:

G Mack, 1977

CFT implies lower bounds 
on gauge invariant operators

d >∼

{
j + k + 2 j, k "= 0
j + 1 k = 0

(j, k)

dV ≥ 3

dS ≥ 1

dTS ≥ 4

dTA ≥ 2

(see also Grinstein et al, 2008)

OµνH†DµDνH

Λd



Scalar unparticles

ΛdUV −dIR
U
MdUV

∂µOIRf̄γµf

e.g.     t→ u + U Georgi 
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Scalar unparticles

ΛdUV −dIR
U
MdUV

∂µOIRf̄γµf

e.g.     Bander, Feng, Rajaraman and Shirmane+e− → µ+µ−

f1f2 Experiment
√

sexp [GeV] ∆σexp [fb]
Lower Bound on Λ4 [GeV]

d = 1.1 d = 1.5 d = 1.9

eµ
LEP/SLC [28] 189 76 2100 670 460

JADE [29] 34.6 1600 1900 400 220

eτ
LEP/SLC [28] 189 100 1900 640 440

JADE [29] 34.6 2400 1700 380 200

eq
LEP/SLC [28] 189 240 1600 560 400

TOPAZ [30] 57.8 4700 1200 340 210

eb
LEP/SLC [28] 189 140 1800 610 430

VENUS [31] 58.0 3100 1400 360 220

TABLE I: Lower bounds on Λ4 from scalar O interactions, for 4 pairs of fermion species f1f2 and

3 representative values of dimension d. These are derived from ∆σexp, the upper bound on new
physics contributions to f1f1 → f2f2 at center-of-mass energy

√
sexp at the experiments named.

FIG. 4: Bounds from e+e− → µ+µ− on the fundamental parameter space (ΛU ,M) for a scalar

unparticle operator with dUV = 3, and d = 1.1 (solid), 1.5 (dashed), and 1.9 (dotted). The regions
below the contours are excluded. The shaded region is excluded by the requirement M > ΛU .

IV. VECTOR UNPARTICLES

A. Differential Cross Sections

For vector unparticles, the leading coupling to fermions is through the interactions

ec
fL,R

3

Λd−1
3

OµfL,RγµfL,R . (29)

10

dUV = 3

dIR = 1.1

dIR = 1.5

dIR = 1.9



Unparticles and the Higgs PJF,  Rajaraman and Shirman 

So far         , irrelevant operators      l ≥ 3

leads, among others, to the following terms in in the Lagrangian

1

MU

HLē Tr M +

(

1

MU

HL̃˜̄eq∗q̄∗ + h.c.

)

, (2.5)

which have the form (2.2) with OUV = Tr M of dimension dUV = 1 and OUV = qq̄ of

dimension dUV = 2. Below the strong coupling scale, once the theory reaches its conformal

fixed point, the dimensions of these operators can be computed from their R-charges to be

dU = 3NC−NF
NF

and dU = 3NC

NF
respectively. In the conformal window, the dimension of both

operators lie between 1 and 2, making them perfect candidates for the operator OU of the

unparticle conformal sector [9].

A couple of comments are in order:

1. For generic choices of NC and NF , in the conformal window, the dimensions of the oper-

ators qq̄,M significantly differ from integer values. This is unlike the Banks-Zaks (BZ)

theory [14] which has a weakly coupled fixed point where all operators have dimension

close to their classical value. In particular, all gauge invariant operators in BZ theory

have almost integer dimensions.

2. We can perturb the theory by adding a term to the action λOIR = λ Tr M . This

corresponds to adding a mass term for the quarks of the electric description. The result

of this mass term is that at low energies, the quarks can be integrated out, and the

theory becomes a pure super-Yang Mills theory, which is no longer conformal.

3. Operator analysis and experimental constraints

The couplings of the unparticle sector and the SM sector can have interesting effects. Most

interest thus far has concentrated on operators involving SM fermions and gauge bosons (with

the goal of determining low energy signatures of unparticles) and consequently on operators

with l ≥ 3 . Because the operator of lowest dimension in the unparticle sector has dimension

greater than 1, this means that the coupling operator is irrelevant (l + dUV − 4 ≥ 0).

However there is another type of coupling between the SM and the unparticle sector,

involving the SM Higgs boson. The coupling is of the form

1

MdUV −2
U

|H|2OUV (3.1)

which flows in the infrared (IR) to

CU

ΛdUV −dU
U

MdUV −2
U

|H|2OIR (3.2)

In the following we will assume that OUV and OIR are the same operators as in eqns. (2.2)

and (2.3) respectively. The dimension of OIR is usually assumed to lie between 1 and 2 [10],

– 3 –
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No symmetry can forbid this operator
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Unparticles flow 
away from fixed 

point

as is indeed the case for SQCD. For such operators, this coupling is relevant in the CFT and

can significantly change the low energy physics of the unparticle sector. We note there is no

symmetry that can forbid this operator without simultaneously forbidding fermion and gauge

boson operators coupling to the unparticle sector.

We note that if there is no scalar operator of dimension less than 2 in the unparticle

sector, then the operator (3.2) is irrelevant. Any operator with dimension less than 2 would

then have to be a vector or higher tensor operator. Such scenarios are difficult to realize in

SQCD, but may be realized in more exotic theories. (For example, one may use AdS/CFT

and consider the CFT dual of an AdS theory which only contains vector fields.) We will not

consider this possibility further.

Once the Higgs acquires a vev, the operator (3.2) introduces a scale into the CFT. This

relevant operator will cause the unparticle sector to flow away from its conformal fixed point

and the theory will become non-conformal at a scale Λ/U , where

Λ4−dU
/U

=

(

ΛU

MU

)dUV −dU

M2−dU
U

v2 . (3.3)

Below this scale the unparticle sector presumably becomes a traditional particle sector. For

consistency we require Λ/U < ΛU . If there is to be any sense in which the theory is truly

conformal the two scales should be well separated.

Breaking of the conformal invariance due to the new operators has important implications

for unparticle phenomenology. For any given experiment, unparticle physics will only be

relevant if

Λ/U < Q (3.4)

where Q is the typical energy of the experiment. For lower energies, the unparticle sector can

be treated as a particle sector. The constraint of (3.4) then takes the form

Q4−dU >

(

ΛU

MU

)dUV −dU

M2−dU
U

v2 . (3.5)

This suggests that low energy experiments may not be sensitive to unparticle physics. To

see this explicitly we note that any observable effect of the operator (2.3) will be proportional

to

ε =

(

ΛU

MU

)2dUV −2dU (

Q

MU

)2(dU+l−4)

. (3.6)

Then the effects of the unparticle sector on observables are bounded by

ε <

(

Q

MU

)2l (MU

v

)4

. (3.7)

It is interesting that this constraint is completely independent1 of both the UV and IR

scaling dimension of the CFT operator and the potential effects of the unparticle sector are
1This is not entirely true as there is dependence on dU due to the modification of phase space as well as

dimensionless couplings in the Lagrangian. This results in corrections of order 1, but the dependence on energy

scales remains the same.
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ΛdUV −dIR
U

M l+dUV −4
U
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Q4−dIR >

(
ΛU
MU

)dUV −dIR

M2−dIR
U v2

To see unparticle physics in expt of typical energy scale Q

Observable effects of the operator                                 

ε =
(

ΛU
MU

)2(dUV −dIR) (
Q

MU

)2(dIR+l−4)



Observable effects bounded
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)2l (MU
v

)4

Independent of       and       dUV dIR

e.g. (g-2) of the electron

OSM = ēe Q ∼ me

⇒ ε <
m6

e

M2
U v4

MU >∼ 100 Gev
ε < 10−28

εexpt < 10−11



High scale tests: LHC

ε <
Q6

M2
Uv4 favours high energy experiments(l=3)

For a 1% deviation at the LHC need MU <∼ 105 GeV

E
MUΛUΛ/U
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SQCD, but may be realized in more exotic theories. (For example, one may use AdS/CFT

and consider the CFT dual of an AdS theory which only contains vector fields.) We will not

consider this possibility further.

Once the Higgs acquires a vev, the operator (3.2) introduces a scale into the CFT. This

relevant operator will cause the unparticle sector to flow away from its conformal fixed point

and the theory will become non-conformal at a scale Λ/U , where

Λ4−dU
/U

=

(

ΛU

MU

)dUV −dU

M2−dU
U

v2 . (3.3)

Below this scale the unparticle sector presumably becomes a traditional particle sector. For

consistency we require Λ/U < ΛU . If there is to be any sense in which the theory is truly

conformal the two scales should be well separated.

Breaking of the conformal invariance due to the new operators has important implications

for unparticle phenomenology. For any given experiment, unparticle physics will only be

relevant if

Λ/U < Q (3.4)

where Q is the typical energy of the experiment. For lower energies, the unparticle sector can

be treated as a particle sector. The constraint of (3.4) then takes the form

Q4−dU >

(

ΛU

MU

)dUV −dU

M2−dU
U

v2 . (3.5)

This suggests that low energy experiments may not be sensitive to unparticle physics. To

see this explicitly we note that any observable effect of the operator (2.3) will be proportional

to

ε =

(

ΛU

MU

)2dUV −2dU (

Q

MU

)2(dU+l−4)

. (3.6)

Then the effects of the unparticle sector on observables are bounded by

ε <

(

Q

MU

)2l (MU

v

)4

. (3.7)

It is interesting that this constraint is completely independent1 of both the UV and IR

scaling dimension of the CFT operator and the potential effects of the unparticle sector are
1This is not entirely true as there is dependence on dU due to the modification of phase space as well as

dimensionless couplings in the Lagrangian. This results in corrections of order 1, but the dependence on energy

scales remains the same.
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Figure 1: Contours of fixed CFT breaking scale, Λ/U , as a function of the IR dimension of the
unparticle operator, dU , and the scale at which it becomes conformal, ΛU . Two particular choices for
the UV dimension of the unparticle operator are made, dUV = 2, 3. As discussed in the text we only
consider Λ/U ≤ ΛU .

Once the conformal invariance is broken at the scale µ, the spectral density will be mod-

ified. In general, one expects that the spectral density will acquire a mass gap (possibly

with some poles corresponding to massless states), several Breit-Wigner peaks near the scale

µ, and will become approximately conformal for momenta large compared to µ. One fur-

ther expects that experimental constraints require that interactions between massless states

(resulting from the breaking of scale invariance in the conformal sector) and SM fields are

suppressed. Any resonances in the spectral density would have important consequences for

detailed signatures of the unparticle sector, especially at energies near the threshold. How-

ever, we expect the leading effects of the breaking of scale invariance will arise from the

existence of the threshold itself. Thus, to obtain the first glimpse into the consequences of

broken scale invariance, we propose a simple toy model where conformal invariance is broken

at a low energy µ by modifying the above equation to

|〈0|OU |P 〉|2ρ(P 2) = AdU θ(P 0)θ(P 2 − µ2)(P 2 − µ2)dU−2 . (4.3)

This modification corresponds to shifting the spectrum to remove modes with energy less

than µ.

This model maintains the unparticle nature of the hidden sector while including the

effects of the breaking of scale invariance. While it is not clear whether such a modification

can arise from a consistent QFT, this represents a simple model to study effects of deviations

from conformal invariance. More generally, once scale invariance is broken, there may be

particle-like modes that would appear as isolated poles in the spectral function; we ignore
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Observable effects of non-unparticles

With the mass gap the unparticles can decay back to SM 
states.  No longer invisible
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Observable effects of non-unparticles

t→ u + U
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Figure 2: The differential decay rate, mt
d log Γ
dEu

, for the decay t → uOU as a function of final state
quark energy. The red curves (concave) assume the IR dimension of the unparticle operator is dU = 4/3
and the blue (convex) assume dU = 3. In both cases the solid, dashed and dot-dashed curves label the
scale, µ, below which there are no unparticle modes and correspond to µ/mt = 0, 0.2, 0.5 respectively.

these effects in this simple model. It would be interesting to see if consistent models of this

type can be constructed and what features they possess3.

This modification can produce observable effects. To illustrate this, we will reconsider

the effects of unparticle physics on the decay of the top through processes like t → uOU . The

decay rate for this process can be computed following [9] to be

mt
d log Γ

dEu
= 4dU (d2

U − 1)
(mt

M

)6
(

Eu

mt

)2 (

1 − 2
(mt

M

)2 Eu

mt

)dU−2

(4.4)

with M2 = m2
t − µ2. In Figure 2 we show this modification for various choices of µ and dU .

Notice that the end point of the distribution is no longer mt/2 but is now m2
t
−µ2

2mt
and that

the normalization of the distribution changes.

It may also be possible to look for effects of the breaking of scale invariance in other

collider signatures, for instance the interference between unparticle and SM propagators in

simple processes such as e+e− → µ + µ− [10]. It would be especially interesting to see how

the inclusion of the coupling between the SM Higgs and the unparticle sector affects Higgs

physics. These questions are left for future work.
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Conclusions

•Unparticles look like a non-integral number of invisible 
particles
•Scalar unparticles most interesting
•New signatures at colliders, not low scale experiments
•Coupling to Higgs creates a mass gap: non-unparticles
•Changes distributions, makes unparticles visible


