Quirky Signals: From Strings to the Underlying Event

Roni Harnik, SLAC/Stanford

Advertising ongoing work by Luty et al.

- + past and ongoing works with
- G. Burdman, Z. Chacko, H.S. Goh and T. Wizansky.

But, before we begin:

A Brief Commercial Aspen's great. But isn't it a bit....

Come to Aspen this summer!

Aspen Summer 2008

LHC: BSM signals in a QCD Environment

July 20th - August 17th

A workshop devoted to all aspects of the discovery of new physics at the LHC.

Organizers: Paddy Fox, Roni Harnik, Tilman Plehn

Outline

- * Quirks:
 - O What are they?
 - O Why think about them?
- * Signals in two cases:
 - Very long strings anomalous muon tracks.
 - Short strings resonances and anomalous UE's.

Quirks

* Consider a new strong force

$$SU(3)_c \times SU(2)_L \times U(1)_Y \times SU(N)$$

* Matter:

$$q' = (Maintage Mai$$

If
$$\Lambda_{
m QCD'} \ll m_{q'}$$
 q' is a Quirk

Types of Quirks

* We can categorize quirks

Colored or Non-colored

(under our QCD)

important for production, etc.

* In regular QCD: $q \longrightarrow p$

* In "quirky QCD" this costs too much energy. squarks' are produced and **remain bound!**

* Now what? Quirks will loose kinetic energy to string tension.

* Energy conservation:

production
$$E_k = \sqrt{\hat{s}} - 2m_{q'} \sim m_{q'}$$
 turning point
$$E = \Lambda^2 l_{max}$$

 $l_{max} \sim \frac{\Lambda^2}{m_{q'}}$ can be very long!

Examples:

* Lets consider two extreme choices for Λ

$\Lambda \sim {\rm few~eV}$	$\Lambda \sim \text{few GeV}$		
$l_{max} \sim { m meters}$	$l_{max} \sim { m few \ fermi}$		
Loooong strings	Excited bound state		
Weird muon tracks.	Resonance. Soft radiation.		

Looooong Strings.

Long Strings

* Each end hadronizes separately. Assume a charged hadron.

A striking sginal: Two "connected muons".

Triggering

- * Naively, this will pass a muon trigger.
- * But, track curvature and direction is not consistent with a muon coming from the interaction point. May fail LVL2.

Triggering

* An interestin possibility:

Trigger events with tracks curving **along** the magnetic field.

Anything that does this is exotic and worth keeping.

(Unless its noise?)

Microscopic Strings.

Model Building

* The hierarchy problem suggests a new symmetry.

A huge impact on collider phenomenology!

Can squarks be uncolored?

Just a Factor of 3

Standard Model

Just a Factor of 3

Standard Model

Just a Factor of 3

Standard Model

Hierarchy solved by squirks!

Folded SUSY

* Motivates both colored and non-colored (s)quirks. e.g.

$$\tilde{q}_L = (1, 2, 3)_{1/6}$$

under $SU(3)_c \times SU(2)_L \times U(1)_Y \times SU(N)$

* The squirks eventually stop. come back. oscillate.

* This system will loose energy by radiation.

$$\omega \sim \frac{\Lambda^2}{m_{\tilde{q}}} \ll \Lambda \sim m_{\rm glue}$$

Soft: photon dominated Hard: glueball dominated. (decreases with impact parameter!)

Photons vs. Glue

- * Can we guesstimate $E_{\gamma}/E_{\mathrm{glue}}$?
 - O Suppose the photon was massive: $m_{\gamma} \sim m_{
 m glue}$

We'd expect
$$\frac{E_{\gamma}}{E_{\rm glue}} \sim \frac{\alpha(m_{\gamma})}{\alpha_{s'}(m_{\rm glue})} \sim \frac{1}{20}$$
 .

O **But** photon does not have a mass!

The kinematic suppression due to the mass depends on impact parameter and energy. May easily be a factor few

$$\frac{E_{\rm soft}}{E_{\rm hard}} \sim \frac{m_{\tilde{q}} \Lambda^2 b^3}{\alpha_{s'}^2}$$

Settle for 10%

* Consider squirk production via a W:

A **peak** in the invariant mass of W+Z

$$m_{WZ}^2 = m_{1S}^2 \sim 4m_{\tilde{q}}^2$$

* Consider squirk production via a W:

Soft radiation of **photons** and (hidden) glueballs

A **peak** in the invariant mass of W+Z

$$m_{WZ}^2 = m_{1S}^2 \sim 4m_{\tilde{q}}^2$$

Ongoing work w/ Wizansky.

Ongoing work w/ Burdman et al

$$E_{\gamma} \sim rac{\Lambda^2}{\sqrt{\hat{s}}} \sim rac{\Lambda^2}{m_{ ilde{q}}}$$
 ~ 0.1 - $1~{
m GeV}$

Can we see such soft photons? Isn't there plenty of soft background? Is the "antenna pattern" visible?

(This is not what the detectors were designed for!)

EM Showers

* Soft photons initiate EM showers in the detector.

- * A naive estimate:
 - ~30% of photons convert to electron-positron pair in tracking system.
 - ~50% of energy reaches Ecal.

Detector Simulation

- * We simulated the photon signal according to a simple antenna model.
- * Analyze soft photons with a dedicated simulation of a "toy detector" (using GEANT4).
- * Take $E_{\gamma}/E_{\rm glue}$ as a parameter (can change event by event).

what is the sensitivity?

what are the backgrounds? min-bias? pile-up? etc.

PBS

Pattern Recognition

Pattern Recognition

Conclusion - Theory

- * Quirks are fun!
- * Quirks may solve the hierarchy problem.
- * Lead to quirky collider phenomenology.
 - Long strings
 - Excited quirkonium —— soft stuff

* Are there other models that give anomalous underlying events... (hidden unvalleys, ...)

Conclusion - Experiment

- * Triggers for anomalous muon like tracks.
- * Trigger for curves along the B field.

- * Some NP searches, e.g. resonances, may be improved by an **acompanying underlying event study**.
- * Possible observables:
 - Multipoles of soft energy deposition in Ecal.
 - Number of charged tracks at central region....

Work in Progress...

* Preliminary:

$$\frac{E_{\gamma}}{E_{\rm glue}} \sim 10\%$$

may be enough to beat background

