

Gavril Giurgiu, Johns Hopkins University on behalf of CDF and DØ collaborations

Aspen 2008 Winter Conference January 14, 2008

Outline

- Introduction

- Tevatron, CDF and DØ detectors
- B Physics at the Tevatron
- Recent results
 - lifetime, lifetime difference and CP violation in neutral ${\sf B}_{\sf s}$ system
 - charge asymmetry in semileptonic B_s decays
 - CP asymmetry in $B^{\scriptscriptstyle +} \to J/\Psi \; K^{\scriptscriptstyle +}$ and $\Lambda_b \! \to p \; \pi(K)$ decays
 - $\Xi_{\rm b}$ baryons
 - $\rm B_{c}$ mass and lifetime
 - Rare decays
 - D^0 mixing
- Topics not covered
- Conclusions

Tevatron

- $p\bar{p}$ collisions at 1.96 TeV

close to 3 fb⁻¹ data on tape Initial instantaneous luminosity 3x10³²cm⁻²s⁻¹

- Buffalos are doing well, they don't know about the Fermilab budget cuts...

Run II Integrated Luminosity April 202 – January 2008

CDF II Detector

B

DØ Detector

- Central tracking: silicon vertex detector - drift chamber
 - $\delta p_T/p_T$ = 0.0015 p_T
 - \rightarrow excellent mass resolution
- Particle identification: dE/dX and TOF
- Good electron and muon ID by calorimeters and muon chambers

- Excellent calorimetry and electron ID
- 2 Tesla solenoid, polarity reversed weekly

 → good control of charge asymmetry
 systematic effects
- Silicon layer 0 installed in 2006 improves track parameter resolution

B Physics at the Tevatron

- Mechanisms for b production in $p\overline{p}$ collisions at 1.96 TeV

q

- At Tevatron, b production cross section is much larger compared to B-factories \rightarrow Tevatron experiments CDF and DØ enjoy rich B Physics program
- Plethora of states accessible only at Tevatron: B_s , B_c , Λ_b , Ξ_b , Σ_b ... \rightarrow complement the B factories physics program
- Total inelastic cross section at Tevatron is ~1000 larger than b cross section
 → large backgrounds suppressed by triggers that target specific decays

b

CP Violation in B_s System

- Standard Model CP violation occurs through complex phases in the unitary CKM quark mixing matrix: (d') = (V + V + V + V) + (d)

Neutral B_s System

١

- Time evolution of B_s flavor eigenstates described by Schrodinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix}$$

- Diagonalize mass (M) and decay (Γ) matrices

 \rightarrow mass eigenstates

$$\begin{split} |B_s^H\rangle &= p \,|B_s^0\rangle - q \,|\bar{B}_s^0\rangle \qquad |B_s^L\rangle = p \,|B_s^0\rangle + q \,|\bar{B}_s^0\rangle \\ \text{where} \ q/p &= \frac{V_{tb}V_{ts}^*}{V_{tb}^*V_{ts}} \end{split}$$

- Flavor eigenstates differ from mass eigenstates and mass eigenvalues are different ($\Delta m_s = m_H - m_L \approx 2|M_{12}|$) $\rightarrow B_s$ oscillates with frequency Δm_s precisely measured by CDF $\Delta m_s = 17.77 + 0.12 \text{ ps}^{-1}$

 $DØ \Delta m_s = 18.56 + - 0.87 \text{ ps}^{-1}$

- Mass eigenstates have different decay widths $\Delta \Gamma = \Gamma_{\rm H} - \Gamma_{\rm H} \approx 2|\Gamma_{12}|\cos(\phi_{\rm s}) \qquad \text{where}$

$$\phi_{s}^{SM} \equiv \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3}$$

CP Violation in $B_s \rightarrow J/\Psi\Phi$ Decays

- Analogously to the neutral B^0 system, CP violation in B_s system occurs through interference of decay with and without mixing:

- CP violation phase β_s in SM is predicted to be very small:

$$\beta_s^{\rm SM} = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) \approx 0.02$$

- New Physics affects the CP violation phase as: $2\beta_s=2\beta_s^{\rm SM}-\phi_s^{\rm NP}$

- If NP phase $\phi^{
m NP}_s$ dominates $ightarrow 2\beta_s = -\phi^{
m NP}_s$

- Extremely physics rich decay mode

- Can measure lifetime, decay width, and, using known $\Delta m_s,$ CP violating phase β_s

- The decay of B_s (spin 0) to J/ Ψ (spin 1) Φ (spin 1) leads to three different angular momentum final states:

L = 0 (s-wave), 2 (d-wave) \rightarrow CP even $\stackrel{\Phi_s \stackrel{\approx}{\approx} 0}{\approx} |B_s^L\rangle$

L = 1 (p-wave)

 $ightarrow \operatorname{CP} \operatorname{odd} \stackrel{\Phi_{\mathbf{s}} \stackrel{st \circ}{st} 0}{st} |B_{s}^{H}\rangle$

- three decay angles $\overrightarrow{\rho} = (\theta, \phi, \psi)$ describe directions of final decay products

$B_s \rightarrow J/\Psi \Phi$ Phenomenology (2)

- Three angular momentum states form a basis for the final J/ $\Psi\Phi$ state

- Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either:

- longitudinal (())	\rightarrow CP even
- transverse (parallel to each other)	\rightarrow CP even

- transverse (\perp perpendicular to each other) \rightarrow CP odd

- Corresponding decay amplitudes: $A_0,\,A_{\parallel},\,A_{\perp}$

- At good approximation ($\Phi_s \approx 0$), mass eigenstates $|B_s^L\rangle$ and $|B_s^H\rangle$ are CP eigenstates \rightarrow use angular information to separate heavy and light states

 \rightarrow determine decay width difference

$$\Delta \Gamma = \Gamma_{\mathsf{L}} - \Gamma_{\mathsf{H}}$$

 \rightarrow some sensitivity to CP violation phase β_s

- Determine B_s flavor at production (flavor tagging)

 \rightarrow improve sensitivity to CP violation phase β_{s}

$B_s \rightarrow J/\Psi \Phi$ Phenomenology (3)

- $B_s \rightarrow J/\Psi \Phi$ decay rate as function of time, decay angles and initial B_s flavor: $\frac{d^4 P(t,\vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{||}|^2 \mathcal{T}_+ f_2(\vec{\rho})$ time dependence terms + $|A_{\parallel}|^{2} \mathcal{T}_{f_{3}}(\vec{\rho}) + |A_{\parallel}||A_{\parallel}|\mathcal{U}_{+}f_{4}(\vec{\rho})$ angular dependence terms + $|A_0||A_{\parallel}|\cos(\delta_{\parallel})\mathcal{T}_+f_5(\vec{\rho})$ + $|A_0||A_{\perp}|\mathcal{V}_+f_6(\vec{\rho}),$ terms with β_s dependence $T_{\pm} = e^{-\Gamma t} \times [\cosh(\Delta \Gamma t/2) \mp (\cos(2\beta_s)) \sinh(\Delta \Gamma t/2)]$ $\mp \eta \sin(2\beta_s) \sin(\Delta m_s t)]$ terms with Δm_s dependence due to initial state flavor tagging $\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times [\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t)]^2$ $-\cos(\delta_{\perp}-\delta_{\parallel})\cos(2\beta_s)\sin(\Delta m_s t)$ 'strong' phases: $\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta\Gamma t/2)$ $\delta_{\parallel} \equiv \arg(A_{\parallel}^*A_0)$ $\mathcal{V}_{\pm} = \pm e^{-\Gamma t} \times [\sin(\delta_{\perp})\cos(\Delta m_s t)]$ $\delta_{\perp} \equiv \arg(A_{\perp}^*A_0)$ $-\cos(\delta_{\perp})\cos(2\beta_s)\sin(\Delta m_s t)$ $\pm \cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta\Gamma t/2)$]. - Tagging \rightarrow better sensitivity to β_s

 B_s Lifetime in $B_s \rightarrow J/\Psi \Phi$ Decays

best measurement

- Cross check: CDF measures decay amplitudes and strong phases in high statistics $B^0 \rightarrow J/\Psi \ K^{*0}$ sample \rightarrow agreement and competitive with B factories

PRL 98, 121801 (2007)

CP Violation Phase β_s in Un-tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Without identification of the initial B_s flavor still have sensitivity to β_s

- Due to irregular likelihood and biases in fit, CDF only quotes Feldman-Cousins confidence regions (Standard Model probability 22%)

- DØ quotes point estimate: $\Phi_s = -0.79 + -0.56$ (stat) $^{+0.14}_{-0.01}$ (syst)

- Symmetries in the likelihood \rightarrow 4 solutions are possible in $2\beta_s\text{-}\Delta\Gamma$ plane

CDF: 90%, 95% C.L

DØ: 39% C.L.

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays

- Likelihood expression predicts better sensitivity to β_s but still double minima due to symmetry: $2\beta_s \rightarrow \pi - 2\beta_s$

$$\begin{array}{c} \Delta\Gamma \to -\Delta\Gamma \\ \delta_{\parallel} \to 2\pi - \delta_{\parallel} \\ \delta_{\perp} \to \pi - \delta_{\perp} \end{array}$$

- Study expected effect of tagging using pseudo-experiments

- Improvement of parameter resolution is small due to limited tagging power ($\epsilon D^2 \sim 4.5\%$ compared to B factories ~30%)

- However, $\beta_s \rightarrow -\beta_s$ no longer a symmetry \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity \rightarrow allowed region for β_s is reduced to half

CP Violation Phase β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays (CDF, 1.4 fb-1)

- First tagged analysis of $B_s \rightarrow J/\Psi \Phi$ (1.4 fb⁻¹)

arXiv:0712.2397

- Signal B_s yield ~2000 events with S/B ~ 1
- As in un-tagged analysis, irregular likelihood does not allow quoting point estimate
- Quote Feldman-Cousins confidence regions

 Confidence regions are underestimated when using 2∆logL = 2.3 (6.0) to approximate 68% (95%) C.L. regions

β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays with External Constraints (CDF)

- Spectator model of B mesons suggests that B_{s} and B^0 have similar lifetimes and strong phases

- Likelihood profiles with external constraints from B factories:

constrain strong phases: constrain lifetime and strong phases:

- External constraints on strong phases remove residual 2-fold ambiguity

β_s in Tagged $B_s \rightarrow J/\Psi\Phi$ Decays Final Results (CDF)

-0.2

-0.4

-0.6

-1

0

arXiv:0712.2397

 β_{s} (rad)

 $\mbox{arXiv:0712.2348}$ - DØ results on β_s using flavor tagging expected soon

2

2βς

-0.2

-0.4

-2

n

Charge Asymmetry in Semileptonic $B_s \rightarrow \mu D_s X$ Decays (DØ, 1.3 fb-1)

- Study $B^0_s
ightarrow \mu^+ D^-_s
u X$ with $D^-_s
ightarrow \phi \pi^- \phi
ightarrow K^+ K^-$ RL 98, 151801 (2007) _

- L = 1.3 fb⁻¹ with total signal yield \sim 27K events
- Compare decay rates of B_s and $\overline{\mathsf{B}}_\mathsf{s}$:

$$A_{SL}^{s,unt} = \frac{N(\mu^+ D_s^-) - N(\mu^- D_s^+)}{N(\mu^+ D_s^-) + N(\mu^- D_s^+)} = [1.23 \pm 0.97 \text{ (stat)} \pm 0.17 \text{ (syst)}] \times 10^{-2}.$$

- Suppressed systematic uncertainties due to regular change of magnet polarity at DØ
- Semileptonic charge asymmetry is related to $\phi_s^{\rm SM} = \arg(-M_{12}/\Gamma_{12})$

$$A_{SL}^{s,unt} = \frac{1}{2} \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s$$

- In SM Φ_s is predicted to be very small ($\approx 4x10^{-3}$)
- NP can significantly modify SM prediction $\phi_s = \phi_s^{
 m SM} + \phi_s^{
 m NP}$

- If
$$\phi^{
m NP}_s$$
 dominates $2\beta_s~=~-\phi^{
m NP}_s~=~-\phi_s$

- Can combine this result with β_s measurement in $\mathsf{B}_s \to \mathsf{J}/\Psi\Phi$ to constrain NP

Charge Asymmetry in Inclusive B_s Decays (DØ, CDF)

- Measure same sign muon charge asymmetry at DØ with 1 fb-1:

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{1}{4f} \left[A_{B^0} + \frac{f_s \chi_{s0}}{f_d \chi_{d0}} A_{B_s^0} \right]$$
$$f \cdot A = -0.0023 \pm 0.0011 \text{ (stat)} \pm 0.0008 \text{ (syst)}$$

- With knowledge of fragmentation fractions f_s and f_d , the integrated oscillation probabilities χ_d and χ_s and known B⁰ semileptonic asymmetry from B factories: $A_s = -0.0064 + -0.0101 \text{ (stat+syst)}$ PRD 74, 092001 (2006)

- Similar measurement at CDF with 1.6 fb-1: $A_s = 0.020 \pm 0.021$ (stat) ± 0.016 (syst) ± 0.009 (inputs)

http://www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil/

- These measurements can be combined with asymmetries in $B_s \!\to\!\! \mu D_s X \,$ to further constrain CP violation phase

- Combine width difference and CP violation phase from time dependent angular analysis $B_s \rightarrow J/\Psi \Phi$ with measurements from charge asymmetry in semileptonic decays

- Contours indicate 39% C.L. regions:
- Final combined DØ results with $\sim 1 \text{ fb}^{-1}$:

$$\Delta \Gamma_s = 0.13 \pm 0.09 \text{ ps}^{-1}$$

$$\phi_s = -0.70^{+0.47}_{-0.39}.$$

- From tagged $B_s \rightarrow J/\Psi \Phi$ analysis, CDF excludes ~half available space in Φ_s - $\Delta\Gamma$ plane (two LHS solutions)

s with ~1 fb⁻¹ : 9 ps^{-1} 79° analysis, le space in 9 ps^{-1} -0 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2-0.3

-0.5

- Assuming same lifetime and strong phases for B^0 and B_s , CDF constrains strong phases to B factories measurements \rightarrow bottom – right solution is suppressed as well

- Expect tagged $B_s \to J/\Psi \Phi~$ analysis from DØ soon
- Expect updated analyses with 2x data from both experiments soon

φ (radians)

CDF Impact on Φ_s World Average

- Overlay CDF result on UT world average which includes DØ combined result http://www.utfit.org/

- CDF measurement suppresses large fraction of CP violation parameter space !

Direct CP Violation in $B^+ \rightarrow J/\Psi K^+$ Decays (DØ, 1.6 fb⁻¹)

- SM predicts small (~1%) direct CP violation in $B^+ \to J/\Psi~K^+$
- Due to interference between direct and annihilation amplitudes

- Correct for K⁺/K⁻ asymmetry

$$A = \frac{N(B^- \to J/\psi K^-) - N(B^+ \to J/\psi K^+)}{N(B^- \to J/\psi K^-) + N(B^+ \to J/\psi K^+)} = +0.0067 \pm 0.0074(stat) \pm 0.0026(syst)$$

- Consistent with world average: $A_{CP}(B^+ \rightarrow J/\psi K^+) = +0.015 \pm 0.017$ but factor of two better precision \rightarrow best measurement Branching Fractions and CP Asymmetry in $\Lambda_b \rightarrow p \pi(K)$ (CDF, 1 fb⁻¹)

- First study of CP asymmetry in b baryon decays (SM prediction ~10%)
- Use large sample collected by two displaced track trigger

- Different states that contribute to $\pi^+\pi^-$ invariant mass are not separated in mass
- Use additional kinematic and dE/dx information to achieve better statistical separation

http://www-cdf.fnal.gov/physics/new/bottom/071018.blessed-ACP_Lambdab_ph/

Branching Fractions and CP Asymmetry in $\Lambda_b \rightarrow p \pi(K)$ (CDF, 1 fb⁻¹)

-Results:

$$\begin{split} A_{\mathsf{CP}}(\Lambda_b^0 \to p\pi^-) &= \frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}\pi^+)}{\mathcal{B}(\Lambda_b^0 \to p\pi^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}\pi^+)} = 0.03 \pm 0.17 \; (stat.) \pm 0.05 \; (syst.) \\ A_{\mathsf{CP}}(\Lambda_b^0 \to pK^-) &= \frac{\mathcal{B}(\Lambda_b^0 \to pK^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}K^+)}{\mathcal{B}(\Lambda_b^0 \to pK^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}K^+)} = 0.37 \pm 0.17 \; (stat.) \pm 0.03 \; (syst.) \end{split}$$

- First CP asymmetry measurement in b baryon decays
- Additionally, first measurement of branching fraction relative to $B^0 \rightarrow K\pi$ decays:

 $\frac{\sigma(p\bar{p} \to \Lambda_b^0 X, p_T > 6 \text{ GeV}/c)}{\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV}/c)} \frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-)}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.0415 \pm 0.0074 \text{ (stat.)} \pm 0.0058 \text{ (syst.)}$ $\frac{\sigma(p\bar{p} \to \Lambda_b^0 X, p_T > 6 \text{ GeV}/c)}{\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV}/c)} \frac{\mathcal{B}(\Lambda_b^0 \to pK^-)}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.0663 \pm 0.0089 \text{ (stat.)} \pm 0.0084 \text{ (syst.)}$

http://www-cdf.fnal.gov/physics/new/bottom/071018.blessed-ACP_Lambdab_ph/

$\Lambda_{\rm b}$ Lifetime (DØ, 1.3 fb⁻¹)

- Important test of models that describe interactions between heavy and light guarks within bound states
- HQET + Lattice QCD predicts: $\tau(\Lambda_b)/\tau(B^0) = 0.88 \pm 0.05$ Tarantino, Eur.Phys.J. C33(2004)

- DØ measures $\Lambda_{\rm b}$ lifetime in two decay modes:

Λ_{b} Lifetime Current Status

- DØ measurements are in agreement with the theoretical predictions and with the world average $\tau(\Lambda_b^0) = 1.230 \pm 0.074 \, \mathrm{ps}_{\mathrm{c}}$
- CDF measurement in $\Lambda_b\to J/\psi~\Lambda~$ is ~3 σ high w.r.t world average arXiv:hep-ex/0609021v1
- Expect CDF measurement in hadronic mode soon

decay mode	CDF lifetime (ps), 1 fb-1	DØ lifetime (ps), 1.3 fb-1
$\Lambda_b \to J/\psi \ \Lambda$	$1.593 \stackrel{+0.083}{_{-0.078}}$ (stat.) ± 0.033 (syst.)	$1.218^{+0.130}_{-0.115}(\text{stat}) \pm 0.042(\text{syst}) \text{ ps}$
$\Lambda^0_b \to \mu \bar{\nu} \Lambda^+_c X$	X	$1.290^{+0.119}_{-0.110} ext{ (stat) } {}^{+0.087}_{-0.091} ext{ (syst)}$
$\Lambda^0_b { ightarrow} \Lambda^+_c \pi^-$	expected soon	X

$\Xi_{\rm b}$ Baryons (DØ, 1.3 fb⁻¹)

Phys. Rev. Lett. 99, 1052001 (2007)

- $\Xi_{\rm b}$ (quark content: *bds*) \rightarrow third observed b baryon after $\Lambda_{\rm b}$ and CDF's recent discovery of $\Sigma_{\rm b}$
- Study b baryons \rightarrow great way to test QCD which predicts $M(\Lambda_b) < M(\Xi_b) < M(\Sigma_b)$
- Predicted mass: $5805.7 \pm 8.1 \text{ MeV}$
- Discovery decay mode at DØ:

$$\Xi_b^- \to J/\psi \Xi_-$$
, with $J/\psi \to \mu^+\mu^-$, and $\Xi^- \to \Lambda \pi^- \to p\pi^-\pi^-$

Run 179200, Event 55278820, $M(\Xi_b) = 5.788 \text{ GeV}$

Ξ_{b} Mass Measurement (DØ, 1.3 fb⁻¹)

- Clear excess in $\Xi_{\rm b}$ invariant mass distribution
- Significance ~5.5 σ

Number of signal events: $15.2 \pm 4.4(\text{stat})^{+1.9}_{-0.4}$ (syst) Mass: $5.774 \pm 0.011(\text{stat}) \pm 0.015(\text{syst})$ GeV (prediction 5805.7 ± 8.1 MeV)

- Width: 0.037 \pm 0.008 GeV in good agreement with MC expectation 0.035 GeV
- Production relative to $\Lambda_b \mathop{\longrightarrow} J/\Psi \,\Lambda$

E_b Mass Measurement (CDF, 1.9 fb⁻¹)

- Ξ tracked in silicon vertex detector for the first time at hadron collider
 - \rightarrow reduce background
 - \rightarrow improve secondary vertex precision

 $M(\Xi_b^-) = (5,792.9 \pm 2.4(stat.) \pm 1.7(syst.)) \text{ MeV/c}^2$ most precise measurement at 7.8 σ significance

$\Xi_{\rm b}\, Current\, Status$

Phys. Rev. Lett. 99 , 1052001 (2007), Phys. Rev. Lett. 99, 052002 (2007)

- $\Xi_{\rm b}$ can be measured in hadronic decays at CDF

- With more data will study other properties of $\Xi_{\rm b}$

B_c Mass in $B_c \rightarrow J/\Psi\pi$ (CDF, 2.4 fb⁻¹)

arXiv:0712.1506

- B_c contains both heavy quarks b, $c \rightarrow$ each quark can decay
- Mass predictions:
 - NR potential models 6247 6286 MeV
 - lattice QCD 6304 +/- 12 ⁺¹⁸-0 MeV
- Three decay possibilities:
 - c quark decays: $B_c^+ \to B_s^0 \pi^+$, and $B_c^+ \to B_s^0 \ell^+ \nu$
 - b quark decays: $B_c^+ \rightarrow J/\psi \pi^+$; $B_c^+ \rightarrow J/\psi D_s^+$; $B_c^+ \rightarrow J/\psi \ell^+ \nu$ - annihilation: $B_c^+ \rightarrow \ell^+ \nu$.

B_c Lifetime in $B_c \rightarrow J/\Psi \mu X$ (DØ, 1.4 fb⁻¹)

- Lifetime expected ~1/3 of other B mesons - Main challenge in partially reconstructed mode $B_c^+ \rightarrow J/\psi \ell^+ \nu$ is understanding multiple backgrounds:
 - real J/Ψ + fake muon
 - fake J/Ψ + real muon
 - real J/ Ψ + real muon \rightarrow from bb events
 - $B^+ \rightarrow J/\psi K^+$ where K $\rightarrow \mu \nu \nu$
 - prompt J/ Ψ + μ

- Mass – lifetime simultaneous fit used to disentangle small signal fraction among large fraction of backgrounds

- Most precise B_c lifetime measurement:

Rare Decays (DØ)

- In SM FCNC processes are forbidden at tree level \rightarrow only occur at higher order

- In many new physics models, decay rates of FCNC decays of b- or c-mesons are enhanced w.r.t. SM expectations

- $[B_s \rightarrow \mu^+ \mu^-]$ theoretical SM prediction $\mathcal{B}(B_s \rightarrow \mu^+ \mu^-) = (3.42 \pm 0.54) \cdot 10^{-9}$ - DØ limit with 2.0 fb⁻¹:

- First observation of $\overline B{}^0_s o D^\pm_s K^\mp$ in 1.2 fb⁻¹

109 +/- 9 signal events with ~8 sigma significance Measure branching fraction relative to Cabibbo allowed mode:

 $\mathcal{B}(\overline{B}^0_s \to D^{\pm}_s K^{\mp}) / \mathcal{B}(\overline{B}^0_s \to D^{+}_s \pi^{-}) = 0.107 \pm 0.019 (\text{stat}) \pm 0.008 (\text{sys})$

http://www-cdf.fnal.gov/physics/new/bottom/070524.blessed-Bs-DsK/

D⁰ Mixing

- After recent observation of fastest neutral meson oscillations in B_s system by CDF and DØ $\,\rightarrow\,$ time to look at the slowest oscillation of D⁰ mesons O

- D⁰ mixing in SM occurs through either:

- Recent D⁰ mixing evidence \leftarrow different D⁰ decay time distributions in

Belle D⁰ → ππ, KK (CP eigenstates) compared to D⁰ → Kπ $\begin{array}{c} \textit{BaBar} \\ \mbox{doubly Cabibbo suppressed (DCS) } D^0 \longrightarrow K^+\pi^- \\ \mbox{compared to Cabibbo favored (CF) } D^0 \longrightarrow K^-\pi^+ \\ \mbox{(Belle does not see evidence in this mode)} \end{array}$

Evidence for D⁰ Mixing at CDF (1.5 fb-1)

- CDF sees evidence for D⁰ mixing at 3.8_o significance by comparing

DCS $D^0 \rightarrow K^+\pi^-$ decay time distribution to CF $D^0 \rightarrow K^-\pi^+$ (confirms *BaBar*)

- Ratio of decay time distributions:

$$R(t/\tau) = R_D + \sqrt{R_D}y'(t/\tau) + \frac{x^2 + y^2}{4}(t/\tau)^2$$

where $x' = x \cos \delta | y \sin \delta$ and $y' = x \sin \delta | y \cos \delta$ δ is strong phase between DCS and CF amplitudes

mixing parameters $x = \Delta M / \Gamma$ $y = \Delta \Gamma / 2\Gamma$ are 0 in absence of mixing

10 10

Topics Not Covered

- Many other recent results not covered in this talk:

- B_s oscillations
- B_s->D_s^(*) D_s^(*)
- $\Psi(2S)$ production,
- Y(1S), Y(2S) polarization
- $B^0 \to J/\psi \; K^{*0}$ angular analysis
- orbitally excited B mesons
- b-b correlations
- CP asymmetry in $B^{\scriptscriptstyle +} \to D^0 \: K^{\scriptscriptstyle +}$

Conclusions

- Very rich B physics program at the Tevatron
- Complementary and competitive with Belle and BaBar
- Great Tevatron performance
 - \rightarrow accumulate data fast
 - \rightarrow expect ~6 fb⁻¹ by the end of the run
- Expect updates of many analyses
- Exciting time to study CP violation and search for new phenomena in B physics at Tevatron !

Backup Slides

he.

Triggers

- Triggers designed to select events with topologies consistent with B decays:
 - single lepton (+ displaced track) (semileptonic decays) $\leftarrow DØ$ (CDF)

- di-lepton (B \rightarrow J/\Psi, B \rightarrow µµ, B \rightarrow µµ + hadrom) $\ \leftarrow$ both CDF and DØ

Effect of Dilution Asymmetry on β_s

- Effect of 20% b-bbar dilution asymmetry is very small

Branching Fractions and CP Asymmetry in $B^+ \rightarrow D^0 K^+$ (CDF, 1 fb⁻¹)

- Measures quantities relevant for determination of the CKM angle

 $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$

$$A_{CP+} = \frac{BR(B^{-} \to D^{0}_{CP+}K^{-}) - BR(B^{+} \to D^{0}_{CP+}K^{+})}{BR(B^{-} \to D^{0}_{CP+}K^{-}) + BR(B^{+} \to D^{0}_{CP+}K^{+})}$$

$$R_{CP+} = \frac{R_{+}}{R} \quad \text{where:}$$

$$R = \frac{BR(B^{-} \to D^{0}K^{-}) + BR(B^{+} \to \overline{D}^{0}K^{+})}{BR(B^{-} \to D^{0}\pi^{-}) + BR(B^{+} \to \overline{D}^{0}\pi^{+})}$$

$$R_{+} = \frac{BR(B^{-} \to D^{0}_{CP+}K^{-}) + BR(B^{+} \to D^{0}_{CP+}K^{+})}{BR(B^{-} \to D^{0}_{CP+}\pi^{-}) + BR(B^{+} \to D^{0}_{CP+}\pi^{+})}$$

Branching Fractions and CP Asymmetry in $B^+ \rightarrow D^0 K^+$ (CDF, 1 fb⁻¹)

- Discriminating variables used to disentangle decay modes:
 - (D⁰,track) invariant mass
 - momentum imbalance: $p_{tr} < p_{D^0}$ $\alpha = 1 p_{tr}/p_{D^0} > 0$
 - $p_{tr} \ge p_{D^0}$ $\alpha = -(1 p_{D^0}/p_{tr}) \le 0.$ - total momentum
 - 'kaonness' contains dE/dx information

of direct B track

 $p_{tot} = p_t + p_{D^0}$

Branching Fractions and CP Asymmetry in $B^+ \rightarrow D^0 K^+$ (CDF, 1 fb⁻¹)

http://www-cdf.fnal.gov/physics/new/bottom/071018.blessed-BDK/

- Results:

- ratio of branching fractions:

$$R = \frac{BR(B^- \to D^0 K^-) + BR(B^+ \to \overline{D}^0 K^+)}{BR(B^- \to D^0 \pi^-) + BR(B^+ \to \overline{D}^0 \pi^+)} = 0.0745 \pm 0.0043(stat.) \pm 0.0045(syst.)$$

$$R_{CP+} = \frac{BR(B^- \to D^0_{CP+} K^-) + BR(B^+ \to \overline{D}^0 \pi^+)}{[BR(B^- \to D^0 K^-) + BR(B^+ \to \overline{D}^0 K^+)]/2} = 1.57 \pm 0.24(stat.) \pm 0.12(syst.)$$

- direct CP asymmetry:

$$A_{CP+} = \frac{BR(B^- \to D^0_{CP+}K^-) - BR(B^+ \to D^0_{CP+}K^+)}{BR(B^- \to D^0_{CP+}K^-) + BR(B^+ \to D^0_{CP+}K^+)} = 0.37 \pm 0.14(stat.) \pm 0.04(syst.)$$

- Quantities measured for the first time at hadron colliders
- Results in agreement and competitive with B factories

$\Xi_{\rm b}$ Production (DØ, 1.3 fb⁻¹)

- Normalize $\exists b$ production to Λb production
- Normalization mode $\Lambda b \rightarrow J/\Psi \Lambda$

where $f(b \rightarrow X)$: fraction of times b quark hadronizes to X