Beyond Minimal FlavorViolation with Minimal Flavor Violation

Gilad Perez

Stony Brook

N.Arkani-Hamed, GP, A. Kagan,T. Volansky;
C. Csaki, Y. Grossman, GP, Z. Surujon \& A. Weiler;
L. Fitzpatrick, GP \& L. Randall (07);

Outline

- Precision flavor, where are we?
- RSI flavor \& CP problem.

Solution- 5D anarchic minimal flavor violation (MFV).

- Surprises w/ MFV's "phase-diagram" (RH currents) \& EFT for MFV.
-Conclusions ?

Constraints - current status $(\Delta F=2)$

Constraints from FCNC, $\Delta F=2$

Expect: $\left(\frac{\bar{d}^{i} d^{j}}{2-3 \mathrm{TeV}}\right)^{2}$ from NP $(\Delta F=2)$. Define:

$$
M_{12}^{K, d, s}=\left.M_{12}^{K, d, s}\right|_{\mathrm{SM}}\left(1+h_{K, d, s} e^{2 i \sigma_{K, d, s}}\right) .
$$

Summary of constraints $h_{K, d, s}$

Gen': $h_{K, d, s} \sim \mathcal{O}\left(10^{5}, 10^{3}, 10^{2}\right)$.

Far from gen’ !!

Summary of constraints $h_{K, d, s}$

Summary of constraints $h_{K, d, s}$

Gen': $h_{K, d, s} \sim \mathcal{O}\left(10^{5}, 10^{3}, 10^{2}\right)$.

Far from gen’ !!

Summary of constraints $h_{K, d, s}$

$$
\text { Gen': } h_{K, d, s} \sim \mathcal{O}\left(10^{5}, 10^{3}, 10^{2}\right)
$$

Far from gen’ !!

	h_{d}	h_{s}	$h_{K}^{L L}, h_{K}^{L R}$
No phases	<1.5	<3	$<5,<0.1$
Generic	<0.3	<1.5	$<0.6,<0.008$

Two options stand out

Minimal flavor violation (MFV) \rightarrow high Λ_{F}.
Flavor violation \leftrightarrow SM, NP: $\left(\bar{d}^{i} Y_{u}^{2} d^{j} / \Lambda_{t}\right)^{2}$
(D'Ambrosio, Giudice, Isidori \& Strumia (02))
Next to MFV (NMFV) \rightarrow low $\Lambda_{F} \sim \Lambda_{t}$.
Violation \sim SM, only 3rd gen', NP: $\left(\bar{d}^{i} D_{3 i} D_{3,}^{*} \bar{d}^{j} / \Lambda_{t}\right)^{2}$
($D \sim V_{\mathrm{CKM}}$, new sources of flavor \& CP violation)

$$
\downarrow \downarrow \quad \text { (Agashe, Papucci, GP \& Piriol (05)) }
$$

Not enough due to ϵ_{K} \& marginal given B sys'! UTfit (07)

Could be enough if:

- Flavor violation is only in the up sector !

Bulk Randall Sundrum I (RSI)

RSI flavor structure \& flavor problem

Looks roughly like NMFV

- Anomalous couplings => SM heavy particles.

Determining the flavor parameters

Flavor structure determined by f

Anarchic $Y_{u, d}^{5 D} \Rightarrow m_{u, d}^{i} \propto f_{Q^{i}} f_{u^{i}, d^{i}}$,
\sqrt{V}
$V_{\mathrm{CKM}} \sim f_{Q^{i}} / f_{Q^{j}}$

Determining the flavor parameters

Flavor structure determined by f

Determining the flavor parameters

Flavor structure determined by f

Anarchic $Y_{u, d}^{5 D} \Rightarrow m_{u, d}^{i} \propto f_{Q^{i}} f_{u^{i}, d^{i}}$,
\sqrt{V}
$V_{\mathrm{CKM}} \sim f_{Q^{i}} / f_{Q^{j}}$

Flavor violation - KK Gluon (\tilde{G})

Largest contr' are from KK gluon exchange which generates $(\mathrm{V}-\mathrm{A})(\mathrm{V}+\mathrm{A})$ currents $\propto\left(F_{Q}^{2}\right)_{12}\left(F_{d}^{2}\right)_{12} \simeq f_{Q^{1}} f_{Q^{2}} f_{d^{1}} f_{d^{2}}$
F_{X} : corresponds to a general flavor basis.

RSI flavor problem

$\epsilon_{K} \Rightarrow M_{\mathrm{KK}}^{G} \gtrsim 8 \mathrm{TeV}!$

Solution - 5D anarchic MFV

Fitzpatrick, GP \& Randall (07)
(or give up on solving the flavor puzzle, Rattazzi \& Zaffaroni (00), Cacciapaglia, Csaki, Galloway, Marandella, Terning \& Weiler (07))
$\checkmark Y_{u, d}=>$ anarchic \& the only source of flavor breaking. (unlike UED models)

The 5D CKM is also anarchic, big mixing angles.

- Also, bulk masses are functions of same spurions:

$$
C_{u, d}=Y_{u, d}^{\dagger} Y_{u, d}+\ldots, C_{Q}=r Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}+\ldots
$$

Structure of anarchic 5D MFV

The 4D theory is hierarchical, flavor puzzle is solved.

$$
\begin{aligned}
Y_{u, d}^{4 D} & \propto F_{Q} Y_{u, d} F_{u, d} \sim e^{-C_{Q}} Y_{u, d} e^{-C_{u, d}} \\
& \sim e^{-\left(r Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right)} Y_{u, d} e^{-Y_{u, d}^{\dagger} Y_{u, d}}
\end{aligned}
$$

Still flows to NMFV with multiple flavor and CPV sources: KK gluon couplings (both RH \& LH currents):

$$
g_{5}^{K K G} \propto F_{Q}^{2} \sim e^{-2 C_{Q}} \sim e^{-2\left(r Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right)}
$$

What about the flavor problem?

Sharp limit: no down type flavor violation when $r \rightarrow 0$.

$$
\begin{aligned}
Y_{d}^{4 D} & \sim e^{-Y_{d} Y_{d}^{\dagger}} Y_{d} e^{-Y_{d}^{\dagger} Y_{d}} \\
g_{5}^{K K G} & \sim e^{-2\left(Y_{d} Y_{d}^{\dagger}, Y_{d}^{\dagger} Y_{d}\right)}
\end{aligned}
$$

U Up type sector: still generates the CKM matrix \& additional flavor violation:

$$
\begin{aligned}
Y_{u}^{4 D} & \sim e^{-Y_{d} Y_{d}^{\dagger}} \sqrt[Y_{u}]{ } e^{-Y_{u}^{\dagger} Y_{u}} \\
g_{5}^{K K G} & \sim e^{-2\left(Y_{d} Y_{d}^{\dagger}, Y_{u}^{\dagger} Y_{u}\right)}
\end{aligned}
$$

Parametric suppression of down type flavor violation

When the H is in the bulk (A5) we can raise the overall scale of the 5D Yukawa by $3 / 2$ which yield a $(2 / 3)^{\wedge} 2$ suppression.

RSI flavor problem

is eliminated

$\epsilon_{K} \Rightarrow M_{\mathrm{KK}}^{G} \gtrsim 2 \mathrm{TeV}$!

RSI flavor problem is eliminated

ϵ_{K}

 2 TeV !

Gravity theory don't respect global currents. New gauge field should be there, accessible to the LHC !
C. Csaki, Y. Grossman, GP, Z. Surujon \& A.Weiler.

RSI CP problem is also solved

RSI: EDM is generated at one loop, only 2 gen' are needed. Agsahe, GP \& Soni os
$d_{N} \equiv \operatorname{Im}\left[F_{Q}\left(Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right) Y_{d} F_{d}\right]_{11}$

$=\operatorname{Im}\left[F_{Q}\left(C_{Q}\right)\left(C_{Q} / a r+Y_{d} Y_{d}^{\dagger}(1-1 / r)\right) Y_{d} F_{d}\right]_{11}$
-5D MFV: Secretly only one phase, requires 3 gen' => 2 loops!

Huge $t_{R} \rightarrow c_{R} Z$ still there!

EWSB: Z mixes with the KKs.

t_{R} mostly composite \rightarrow non-univ. couplings.
$B R\left(t \rightarrow c_{R} Z\right) \propto\left|U_{R}\right|_{23} \times \delta g_{Z} \sim 10^{-5}$.
Agashe, GP \& Soni (06)

$r=0, \infty: 5 \mathrm{D}$ MFV $=>4 \mathrm{D}$ MFV

C. Csaki, Y. Grossman, GP, Z. Surujon \& A.Weiler

- Down type int' are diagonal when $r \rightarrow 0$.

- Up type: flavor violation controlled by CKM matrix.

Can express flavor parameters, $F_{Q, u, d}, Y_{u, d}$,
as a function of $M_{u, d}^{4 D}$

- Looks exactly like MFV!

$r=0, \infty: 5 \mathrm{D}$ MFV $=>4 \mathrm{D}$ MFV

C. Csaki, Y. Grossman, GP, Z. Surujon \& A.Weiler

- Down type int' are diagonal when $r \rightarrow 0$.

$$
\sqrt{\bullet}
$$

- Up type: flavor violation controlled by CKM matrix.

Can express flavor parameters, $F_{Q, u, d}, Y_{u, d}$, as a function of $M_{u, d}^{4 D}$

- Looks exactly like MFV!

"Fake" EFT for MFV

The MFV ladder

linear MVF
non-linear
MVF
non-analytical
$M V F$

"Fake" EFT for MFV

N. Arkani-Hamed, A. Kagan, GP \& T. Volansky

The MFV ladder

"Fake" EFT for MFV

N. Arkani-Hamed, A. Kagan, GP \& T. Volansky

The MFV ladder

I-2 \& 2-3 transition,
correlated
linear MVF
:---:
uncorrelated;
sUSY w/ large logs,
RSI w/ shining
non-linear
MVF

"Fake" EFT for MFV

N. Arkani-Hamed, A. Kagan, GP \& T. Volansky

The MFV ladder

I-2 \& 2-3 transition, correlated linear MVF
I-2 \& 2-3 transition, uncorrelated; SUSY w lage logs, RSI w/ shining non-linear MVF
non-analytical
MVF

"Fake" EFT for MFV

N. Arkani-Hamed, A. Kagan, GP \& T. Volansky

The MFV ladder

\(\left.$$
\begin{array}{|c}\text { I-2 \& 2-3 transition, } \\
\text { correlated } \\
\text { linear MVF }\end{array}
$$ \left\lvert\, \begin{array}{c}I-2 \& 2-3 transition,

uncorrelated;

SUSY w/ large logs,

RSI w/ shining

non-linear

MVF\end{array}\right.\right]\)| large "tan β "enhanced |
| :---: |
| RH currents appear |
| non-analytical |
| MVF |

Conclusions

- Anarchic 5D MFV, non-trivial.
(i) Lead to 4D hierarchy => solves the flavor puzzle.
(ii) Flows to NMFV, new mixings and phases.

Sharp limit, no d-flavor violation, solves the RSI flavor \& CP problem.

Can we derive from underlying theory? Requires gauge flavor sym', implications? EFT for MFV => non-trivial surprises.

Top Diag' Flavor Physics @ LHC

Top Diag' Flavor Physics @ LHC

AMON
APPLE FILLED

GLAZED
CREME FILLED

CHOCOLATE
ICED CRULLER

CHOCOLATE
ICED GLAZED
WITH SPRINKLES

GLAZED
BLUEBERRY
CAKE

GLAZED
SOUR CREAM

Challenges

Suppressed production.

- Non-trivial final states ($\left.t_{R}, W_{L}, Z_{L}, h\right)$.
- Heavy states => Urel' decay particles.

Broad objects.

LHC Reach/Searches

-KK graviton.
(Agashe, Davoudiasl, GP \& Soni;Also Fitzpatrick, Kaplan, Randall \& Wang)

- Top precision tests.

(K. Agashe, L.Almeida, T. Han, G. Sterman, J.Virzi \& W.Vogelsang, in progress)
-Ultra-relativistic tops (mostly leptonic).
(K.Agashe,T. Han, M. Strassler \& J.Virzi ... in progress)

RS electroweak sector.
(K.Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han, G. Huang, Z. Si, A. Soni, in progress)

Flavor violation, tree level gauge KK

KK's "live" on the TeV brane

- Roughly NMFV with multiple flavor and CPV sources:

KK gauge couplings: $g_{5}^{K K G} \propto F_{Q, u, d}^{2} \sim e^{-2 C_{Q, u, d}}$

- The NMFV limit is realized since only 3rd eigenvalue of $F_{Q, u, d}$ is sizable \& they are quasi aligned with $Y_{u, d}^{4 D}$

Does the numerology work?

- We need to solve the following eq.:
$\operatorname{diag}\left(C_{Q}\right)=a \operatorname{diag}\left[r V_{5}^{\mathrm{KM} \dagger}\left(\theta_{i j}, \delta\right) C_{u} V_{5}^{\mathrm{KM}}\left(\theta_{i j}, \delta\right)+C_{d}\right]$,
$V_{5}^{K M}$ is the 5 D CKM matrix $\theta_{i j}$ is a mixing angle between the i th and j th generations and δ is the 5 D CKM phase.
- Remarkably due to the large top mass and the fact that only the RH top couplings were not well tested we have:

Flavor parameters

Flavor	f_{Q}	f_{u}	f_{d}
1	$\lambda^{3} f_{Q^{3}} \sim 4 \times 10^{-3}$	$\frac{m_{u}}{m_{t} \frac{\lambda}{}^{f_{y}}} \sim 10^{-3}$	$\frac{m_{d} \lambda^{3}}{m_{b}} f_{f_{d}}^{3} \sim 10^{-3}$
II	$\lambda^{2} f_{Q^{3}} \sim 2 \times 10^{-2}$		$\frac{m_{s} \frac{\lambda^{2}}{f_{b}}}{f_{d}} \sim 3 \times 10^{-3}$
III	$\frac{m_{t}}{v f_{v}{ }^{2}} \sim \frac{1}{3}$	$\mathcal{O}\left(\frac{5}{6}\right)^{*}$	$\frac{m_{b}}{m_{t} f_{u}{ }^{3}} \sim 6 \times 10^{-3}$

* Determined by m_{t} \& EWPM, $Z \rightarrow b \bar{b}$.

Note that: $f_{1,2} \ll 1 \ll>$ roughly NMFV

RSI Flavor structure

$\mathcal{L}_{f}=\sqrt{G} k\left[C_{Q} \bar{Q} Q+C_{d} \bar{d} d+C_{u} \bar{u} u\right.$ $\left.+\left.h \bar{Q}\left(Y_{u} u+Y_{d} d\right)\right|_{\mathrm{Tev}}\right]$

Quarks: $\quad f_{\psi} \propto e^{\left(\frac{1}{2}-c\right) \sigma}, \sigma \equiv k \pi r_{c} \theta$.
Heavy [light] quarks $\Rightarrow c \gtrless \frac{1}{2}$.
SM (3gen'): $\quad c \Rightarrow \operatorname{diag}\left(C_{Q, u, d}\right)$
$f_{\psi} \Rightarrow \operatorname{diag}\left(F_{Q, u, d} \sim e^{-C_{Q, u, d}}\right)$

