# Beyond Minimal Flavor Violation with Minimal Flavor Violation

Gilad Perez

Stony Brook

N. Arkani-Hamed, GP, A. Kagan, T. Volansky; C. Csaki, Y. Grossman, GP, Z. Surujon & A. Weiler; L. Fitzpatrick, GP & L. Randall (07);

#### Outline

- Precision flavor, where are we?
- RSI flavor & CP problem.
- ♦ Solution- 5D anarchic minimal flavor violation (MFV).
- Surprises w/ MFV's "phase-diagram" (RH currents) & EFT for MFV.

Conclusions?

#### Constraints - current status ( $\Delta F = 2$ )



#### Constraints from FCNC, $\Delta F = 2$

Expect: 
$$\left(\frac{\bar{d}^i d^j}{2-3\text{TeV}}\right)^2$$
 from NP ( $\Delta F = 2$ ).

Define:

$$M_{12}^{K,d,s} = M_{12}^{K,d,s} \Big|_{SM} (1 + h_{K,d,s} e^{2i\sigma_{K,d,s}}).$$

The SM scale

**Gen'**:  $h_{K,d,s} \sim \mathcal{O}(10^5, 10^3, 10^2)$ .



Far from gen'!!



News from Tevatron

**Gen'**:  $h_{K,d,s} \sim \mathcal{O}(10^5, 10^3, 10^2)$ .



Far from gen'!!



**Gen'**:  $h_{K,d,s} \sim \mathcal{O}(10^5, 10^3, 10^2)$ .



#### Far from gen'!!

|           | $h_d$ | $h_s$ | $h_K^{LL}, h_K^{LR}$ |
|-----------|-------|-------|----------------------|
| No phases | <1.5  | <3    | <5, <0. I            |
| Generic   | <0.3  | <1.5  | <0.6, <0.008         |

#### Two options stand out

 $\Diamond$  Minimal flavor violation (MFV)  $\to$  high  $\Lambda_F$ .

Flavor violation  $\leftrightarrow$  SM, NP:  $(\bar{d}^i Y_u^2 d^j / \Lambda_t)^2$ 

(D'Ambrosio, Giudice, Isidori & Strumia (02))

 $\diamond$  Next to MFV (NMFV)  $\rightarrow$  low  $\Lambda_F \sim \Lambda_t$ .

Violation  $\sim$  SM, only 3rd gen', NP:  $(\bar{d}^i D_{3i} D_{3j}^* \bar{d}^j / \Lambda_t)^2$ 

( $D \sim V_{\rm CKM}$ , new sources of flavor & CP violation)

(Agashe, Papucci, GP & Pirjol (05))

**UTfit** (07)

Not enough due to  $\epsilon_K$  & marginal given B sys'!

#### Could be enough if:

Flavor violation is only in the up sector!

Fascinating: there's a hope for the LHC to probe dynamics of flavor through top precision!

# Bulk Randall Sundrum I (RSI)



#### RSI flavor structure & flavor problem



# Looks roughly like NMFV

Anomalous couplings => SM heavy particles.



#### Determining the flavor parameters



Flavor structure determined by f

Anarchic 
$$Y_{u,d}^{5D} \Rightarrow m_{u,d}^i \propto f_{Q^i} f_{u^i,d^i}$$
,

$$V_{
m CKM} \sim f_{Q^i}/f_{Q^j}$$

#### Determining the flavor parameters

Flavor structure determined by f

A 
$$f \rightarrow$$
 function of bulk mass:  $f(c)^2 = (1/2 - c)/(1 - \epsilon^{1-2c})$   $\epsilon = \text{TeV}/M_{\text{Pl}}$ 

#### Determining the flavor parameters



Flavor structure determined by f

Anarchic 
$$Y_{u,d}^{5D} \Rightarrow m_{u,d}^i \propto f_{Q^i} f_{u^i,d^i}$$
,

$$V_{
m CKM} \sim f_{Q^i}/f_{Q^j}$$

#### Flavor violation - KK Gluon (G)

Largest contr' are from KK gluon exchange which generates

(V-A)(V+A) currents 
$$\propto (F_Q^2)_{12} (F_d^2)_{12} \simeq f_{Q^1} f_{Q^2} f_{d^1} f_{d^2}$$

 $F_X$ : corresponds to a general flavor basis.



# RSI flavor problem

$$\epsilon_K \rightarrow M_{\rm KK}^G \gtrsim 8 {
m TeV!}$$

#### Solution - 5D anarchic MFV

Fitzpatrick, GP & Randall (07)

(or give up on solving the flavor puzzle, Rattazzi & Zaffaroni (00),

Cacciapaglia, Csaki, Galloway, Marandella, Terning & Weiler (07)

- $Y_{u,d}$  => anarchic & the only source of flavor breaking. (unlike UED models)
- ♦ The 5D CKM is also anarchic, big mixing angles.

Also, bulk masses are functions of same spurions:

$$C_{u,d} = Y_{u,d}^{\dagger} Y_{u,d} + \dots, \ C_Q = r Y_u Y_u^{\dagger} + Y_d Y_d^{\dagger} + \dots,$$

#### Structure of anarchic 5D MFV

The 4D theory is hierarchical, flavor puzzle is solved.

$$Y_{u,d}^{4D} \propto F_Q Y_{u,d} F_{u,d} \sim e^{-C_Q} Y_{u,d} e^{-C_{u,d}}$$
  
  $\sim e^{-(rY_uY_u^{\dagger} + Y_dY_d^{\dagger})} Y_{u,d} e^{-Y_{u,d}^{\dagger}Y_{u,d}}$ 

Still flows to NMFV with multiple flavor and CPV sources:
KK gluon couplings (both RH & LH currents):

$$g_5^{KKG} \propto F_Q^2 \sim e^{-2C_Q} \sim e^{-2(rY_uY_u^\dagger + Y_dY_d^\dagger)}$$

# What about the flavor problem?

 $\diamond$  Sharp limit: no down type flavor violation when  $r \to 0$ .

$$Y_d^{4D} \sim e^{-Y_d Y_d^{\dagger}} Y_d e^{-Y_d^{\dagger} Y_d}$$

$$g_5^{KKG} \sim e^{-2(Y_d Y_d^{\dagger}, Y_d^{\dagger} Y_d)}$$

Up type sector: still generates the CKM matrix & additional

flavor violation:

$$Y_u^{4D} \sim e^{-Y_d Y_d^{\dagger}} Y_u e^{-Y_u^{\dagger} Y_u}$$

$$g_5^{KKG} \sim e^{-2(Y_d Y_d^{\dagger}, Y_u^{\dagger} Y_u)}$$

# Parametric suppression of down type flavor violation



When the H is in the bulk (A<sub>5</sub>) we can raise the overall scale of the 5D Yukawa by 3/2 which yield a (2/3)<sup>2</sup> suppression.

# RSI flavor problem is eliminated

$$\epsilon_K \rightarrow M_{\rm KK}^G \gtrsim 2 \, {\rm TeV!}$$

# RSI flavor problem is eliminated

$$\epsilon_K \rightarrow M_{\rm KK}^G \gtrsim 2 \, {\rm TeV!}$$

Gravity theory don't respect global currents. New gauge field should be there, accessible to the LHC!

# RSI CP problem is also solved

RSI: EDM is generated at one loop,

only 2 gen' are needed. (Agashe, GP & Soni 05)  $d_N \equiv Im \left[ F_Q(Y_u Y_u^{\dagger} + Y_d Y_d^{\dagger}) Y_d F_d \right]_{11} \underbrace{\frac{d_L^{b_L}}{d_L^{b_L}} d_R^{b_L}}_{H} \underbrace{\frac{d_L^{m_l}}{d_L^{b_L}} d_R^{b_R}}_{H} \underbrace{\frac{d_L^{m_l}}{d_L^{b_L}} d_R^{b_R}}_{11}$   $= Im \left[ F_Q(C_Q)(C_Q/ar + Y_d Y_d^{\dagger}(1 - 1/r)) Y_d F_d \right]_{11}$ 

♦5D MFV: Secretly only one phase, requires 3 gen' => 2 loops!

# Huge $t_R \to c_R Z$ still there!

- EWSB: Z mixes with the KKs.
- If  $t_R$  mostly composite  $\rightarrow$  non-univ. couplings .
- 6  $BR(t \to c_R Z) \propto |U_R|_{23} \times \delta g_Z \sim 10^{-5}$  . Agashe, GP & Soni (06)

#### $r=0,\infty$ : 5D MFV => 4D MFV

C. Csaki, Y. Grossman, GP, Z. Surujon & A. Weiler

lack Down type int' are diagonal when  $r \to 0$ .



Up type: flavor violation controlled by CKM matrix.

Can express flavor parameters,  $F_{Q,u,d}, Y_{u,d}$ , as a function of  $M_{u,d}^{4D}$ 

Looks exactly like MFV!

#### $r=0,\infty$ : 5D MFV => 4D MFV

C. Csaki, Y. Grossman, GP, Z. Surujon & A. Weiler

igoplus Down type int' are diagonal when  $r \to 0$ .



Up type: flavor violation controlled by CKM matrix.

Can express flavor parameters,  $F_{Q,u,d}, Y_{u,d}$ , as a function of  $M_{u,d}^{4D}$ 

Looks exactly like MFV!

Where did huge RH current  $(t_R \to c_R Z)$  come from??

#### The MFV ladder

linear MVF

non-linear MVF

non-analytical MVF

The MFV ladder

I-2 & 2-3 transition, correlated

linear MVF

non-linear MVF

non-analytical MVF Truncated polynom of  $Y_{u,d}$ 

The MFV ladder

I-2 & 2-3 transition, correlated

#### linear MVF

I-2 & 2-3 transition, uncorrelated; SUSY w/ large logs, RSI w/ shining non-linear MVF

non-analytical MVF Truncated polynom of  $Y_{u,d}$ EFT below  $\Lambda_T$  scale,  $e^{iT^a \chi_u^a / \Lambda_t} \begin{pmatrix} \Phi_u / \Lambda_t & 0 \\ 0 & u \end{pmatrix} e^{-iT^a \rho_u^a / \Lambda_t}$ 

The MFV ladder

I-2 & 2-3 transition, correlated

#### linear MVF

I-2 & 2-3 transition, uncorrelated; SUSY w/ large logs, RSI w/ shining non-linear MVF

non-analytical MVF



The MFV ladder

I-2 & 2-3 transition, correlated

#### linear MVF

I-2 & 2-3 transition, uncorrelated; SUSY w/ large logs, RSI w/ shining non-linear MVF

large "tan β"enhanced RH currents appear

non-analytical MVF Truncated polynom of  $Y_{u,d}$ 

Interpolates
between 2
MFV def's:
Ali, Buras &
D'Ambrosio et. al.

EFT below  $\Lambda_T$  scale,  $e^{iT^a\chi_u^a/\Lambda_t} \begin{pmatrix} \Phi_u/\Lambda_t & 0 \\ 0 & y_t \end{pmatrix} e^{-iT^a\rho_u^a/\Lambda_t}$ 

EFT below the scale  $\langle \chi_{u,d} \rangle \approx (\lambda_C^2, \lambda_C^3)$  large RH currents  $\sim m_c/\lambda_C^2$ 

#### Conclusions

- Anarchic 5D MFV, non-trivial.
  - (i) Lead to 4D hierarchy => solves the flavor puzzle.
  - (ii) Flows to NMFV, new mixings and phases.
- Sharp limit, no d-flavor violation, solves the RSI flavor & CP problem.
- Can we derive from underlying theory?
- Requires gauge flavor sym', implications?
- ♦ EFT for MFV => non-trivial surprises.

# Top Diag' Flavor Physics @ LHC



ICED

**CUSTARD FILLED** 

SOUR CREAM

# Top Diag' Flavor Physics @ LHC







# Challenges

Suppressed production.

 $\diamond$  Non-trivial final states ( $t_R$ ,  $W_L$ ,  $Z_L$ , h).

Heavy states => Urel' decay particles.

Broad objects.

#### LHC Reach/Searches

KK gluon.

(Agashe, Belyaev, Krupovnickas, GP & Virzi; Also Lillie, Randall & Wang)

KK graviton.

(Agashe, Davoudiasl, GP & Soni; Also Fitzpatrick, Kaplan, Randall & Wang)

♦ Top precision tests.

(K. Agashe, L. Almeida, T. Han, G. Sterman, J. Virzi & W. Vogelsang, in progress)

Ultra-relativistic tops (mostly leptonic).

(K. Agashe, T. Han, M. Strassler & J. Virzi ... in progress)

RS electroweak sector.

(K. Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han, G. Huang, Z. Si, A. Soni, in progress)

#### Flavor violation, tree level gauge KK

#### KK's "live" on the TeV brane

Roughly NMFV with multiple flavor and CPV sources:

KK gauge couplings:  $g_5^{KKG} \propto F_{Q,u,d}^2 \sim e^{-2C_{Q,u,d}}$ 

lackloain The NMFV limit is realized since only 3rd eigenvalue of  $F_{Q,u,d}$  is sizable & they are quasi aligned with  $Y_{u,d}^{4D}$ 

# Does the numerology work?

We need to solve the following eq.:

$$\operatorname{diag}(C_Q) = a \operatorname{diag}[r V_5^{\mathrm{KM}\dagger}(\theta_{ij}, \delta) C_u V_5^{\mathrm{KM}}(\theta_{ij}, \delta) + C_d],$$

 $V_5^{KM}$  is the 5D CKM matrix  $\theta_{ij}$  is a mixing angle between the *i*th and *j*th generations and  $\delta$  is the 5D CKM phase.

Remarkably due to the large top mass and the fact that only the RH top couplings were not well tested we have:

$$C_Q \sim C_d \neq C_u$$
  $\longrightarrow$   $r = \mathcal{O}(0.25)$ 

#### Flavor parameters



| Flavor | $f_Q$                                     | $f_u$                                                             | $f_d$                                                             |
|--------|-------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| I      | $\lambda^3 f_{Q^3} \sim 4 \times 10^{-3}$ | $\frac{m_u}{m_t} \frac{\lambda^3}{f_{u^3}} \sim 10^{-3}$          | $\frac{m_d}{m_b} \frac{\lambda^3}{f_{d^3}} \sim 10^{-3}$          |
| П      | $\lambda^2 f_{Q^3} \sim 2 \times 10^{-2}$ | $\frac{m_c}{m_t} \frac{\lambda^2}{f_{u^3}} \sim 5 \times 10^{-1}$ | $\frac{m_s}{m_b} \frac{\lambda^2}{f_{d^3}} \sim 3 \times 10^{-3}$ |
| III    | $rac{m_t}{v f_{u^3}} \sim rac{1}{3}$    | $\mathcal{O}\left(\frac{5}{6}\right)^*$                           | $\frac{\frac{m_b}{m_t f_{u^3}} \sim 6 \times 10^{-3}$             |

Note that:  $f_{1,2} \ll 1 \ll 1 \ll 1$ 

<sup>\*</sup> Determined by  $m_t$  & EWPM,  $Z o b ar{b}$  .

# RSI Flavor structure

$$\mathcal{L}_{f} = \sqrt{G}k \left[ \frac{C_{Q}\bar{Q}Q + C_{d}\bar{d}d + C_{u}\bar{u}u}{+h\bar{Q}(Y_{u}u + Y_{d}d)} \right]_{\text{TeV}}$$

- Quarks:  $f_{\psi} \propto e^{\left(\frac{1}{2}-c\right)\sigma}, \ \sigma \equiv k\pi r_c \theta$ .
- ullet Heavy [light] quarks  $\Rightarrow c \geqslant rac{1}{2}$  .
- SM (3gen'):  $c\Rightarrow {\sf diag}(C_{Q,u,d})$   $f_{\psi}\Rightarrow {\sf diag}(F_{Q,u,d}\sim e^{-C_{Q,u,d}})$