Quark and Lepton Masses from Top Loops

Bogdan Dobrescu (Fermilab)

Work with Paddy Fox

Quark and lepton masses at the 1 TeV scale:

to the fermions? How is electroweak symmetry breaking communicated

All Standard Model fermions are chiral.

The two top quarks:

- "left-handed" top (feels the weak interaction)
- "right-handed" top (no interaction with $W^\pm)$

Top mass: t_L turns into t_R and vice-versa

All Standard Model fermions are chiral.

Top quark gets a mass from its interaction

with the vacuum:

$$y_t \, ar t_R \langle H^0
angle t_L$$
 , $\langle H^0
angle pprox 174$ GeV

Measured top mass \Rightarrow top Yukawa coupling is $y_t \approx 1$.

Many attempts at explaining the hierarchy of Yukawa couplings:

- discrete symmetries $ightarrow (\langle \phi \rangle/M)^n$ suppressions.
- GUT relations.
- wave function overlaps in extra dimensions.
- •
- loop suppressions:

mass as a one loop contribution involving the muon mass. Georgi, Glashow, 1972 – attempts to calculate the electron

Many papers in the 1980's (e.g., Balakrishna, Kagan, Mohapatra, 1988)

Most ambitious schemes: 3rd generation masses at tree level, 2nd generation masses at one loop, 1st generation masses at two loops.

 $y_t \, ar{t}_R Q_L^3 \, H$, and introduce some interactions that communicate EWSB to the other quarks and leptons. Let us assume that only the top quark gets its mass at tree level,

 \tilde{r} : scalar field transforming as $(3,2,\pm7/6)$ under $SU(3)_c \times SU(2)_W \times U(1)_Y$

Most general renormalizable interactions with SM fermions

$$\lambda_{ij}\, \tilde{r}\, \overline{u}_R^i L_L^j + \lambda'_{ij}\, \tilde{r}\, \overline{Q}_L^i e_R^j \qquad (\tilde{r} ext{ is a leptoquark})$$

break explicitly the chiral symmetries of the

quarks
$$U(2)_Q \times U(2)_u \times U(1)_t \times U(3)_d \to U(1)_u \times U(3)_d$$
 and leptons $U(3)_L \times U(3)_e \to U(1)_L$

masses at some loop level. \Rightarrow all up-type quarks and electrically-charged leptons get

The one-loop diagram responsible for the tau mass.

$$m_{ au} \simeq \lambda_{33} \lambda_{33}' \, m_t rac{N_c}{16\pi^2} \ln \left(rac{\Lambda^2}{M_{ ilde{r}}^2}
ight)$$

a superpartner of \tilde{r} , or some dynamics if \tilde{r} is a composite particle. Some new physics cuts off the loop integral at a scale Λ :

 $m_{ au}$ depends only on the ratio $\Lambda/M_{ ilde{r}}$ (only a lower limit on $M_{ ilde{r}}$ may be derived from phenomenology).

Charm mass induced by a two-loop "rainbow" diagram:

 $m_c \simeq \lambda_{23}^\prime \lambda_{23} \, m_{ au} \, rac{1}{16 \pi^2} \ln \left(rac{\Lambda^2}{M_{ ilde{r}}^2}
ight)$

the $m_c/m_ au$ ratio at 1 TeV requires $\lambda_{23}\lambda_{23}' pprox (3.3)^2$ for $\Lambda pprox 10 M_{ ilde r}$. Assuming that there are no other contributions to m_c ,

Muon mass induced by 3-loop "rainbow" and "bug" diagrams:

$$m_{\mu} \simeq \lambda_{22}^{\prime} \lambda_{22} m_c \left(1+x
ight) rac{N_c}{16\pi^2} \ln \left(rac{\Lambda^2}{M_{ ilde{r}}^2}
ight)$$

$$m_{\mu}/m_c$$
 ratio requires $\lambda_{22}\lambda_{22}'(1+x) pprox (1.5)^2$

At 3-loops the electron is still massless!

Up-quark mass induced at 4-loops:

$$m_u \simeq \lambda'_{12} \lambda_{12} \, m_\mu \, rac{1}{16 \pi^2} \ln \left(rac{\Lambda^2}{M_{ ilde{r}}^2}
ight)$$

Correct m_u/m_μ ratio requires $\lambda_{12}\lambda'_{12}\approx (0.6)^2$

Down-type quark masses

scalar field with charges (3,1,-1/3) under $SU(3)\times SU(2)\times U(1)$.

Renormalizable couplings to quarks: $~\kappa_{ij}\, ilde{d}\, \overline{Q}^{ci}_L Q^j_L + \kappa'_{ij}\, ilde{d}\, \overline{d}^{ci}_R u^j_R$

 m_b induced by a 1-loop rainbow diagram. m_s induced by 3-loop rainbow and bug diagrams.

lines and two $ilde{r}$ lines. m_d induced by a mixed 4-loop diagram involving two $ilde{d}$

the electron mass. Similar 4-loop mixed diagram (with three $ilde{r}$ and one d) contributes to

Phenomenological constraints

Tree level flavor-changing processes induced by $ilde{r}$ exchange:

$$\mu
ightarrow e$$
 conversion

$$K^+ \to \pi^0 \mu^+ e^-, \dots$$

$$au^+ o K^0 e^+, \dots$$

$$\pi^+
ightarrow e^+
u$$
 versus $\pi^+
ightarrow \mu^+
u$

į

$$\Rightarrow M_{\widetilde{r}} > O(5-50)$$
 TeV.

(Nambu; Miransky, Tanabashi, Yamawaki; Bardeen, Hill, Lindner, ...) Top condensation \Rightarrow Higgs boson is a $ar{t}t$ bound state!

Binding may be due to some strongly-interacting heavy gauge bosons

compositeness down to a few TeV. New heavy quarks (vectorlike) could bring scale of Higgs

Explicit models: top seesaw, QCD in extra dimensions, ...

Conclusions

- Quark and lepton masses follow intriguing patterns.
- mass spectra are induced by multi-loop contributions. fermions by couplings to some new scalar fields, then realistic If EWSB is communicated from the top quark to the other
- origin of quark and lepton masses. Searches for new flavor-changing processes may unravel the

Work done with Paddy Fox at Fermilab.