Measuring Masses and Spins of New Particles at Colliders!

K.C. Kong

Fermilab

Aspen 2008 Winter Conference "Revealing the Nature of Electroweak Symmetry Breaking" 13-19 January 2008 Aspen, Colorado

Hints for New Physics Beyond the Standard Model

- Dark Matter: 23% of the unknown in the universe
 - Best evidence for new physics beyond the Standard Model: if the dark matter is the thermal relic of a WIMP, its mass should be of the weak scale

$$\Omega_{WIMP} \sim \left(\frac{1}{10^2 \alpha}\right)^2 \left(\frac{M_{WIMP}}{1 \ TeV}\right)$$

- Requires a stable (electrically) neutral weakly interacting particle at $\mathcal{O}(1)$ TeV
- To be stable, it should be the lightest particle charged under a new symmetry
- Electroweak precision measurements
 - There is no evidence of deviations of the EW observables from the SM predictions
 - New physics contributions to the EW observables should be suppressed
 - Possible if new particles are charged under a new symmetry under which SM is neutral
 - Their contributions will be loop-suppressed and the lightest particle is stable
- \Rightarrow Collider implications:
 - Pair production of new particles
 - Cascade decays down to the lightest particle give rise to missing energy plus jets/leptons

"Confusion scenario"

- What is new physics if we see jets/leptons + missing energy at the colliders?
- The standard answer: Supersymmetry with R-parity
 → for a long time, this was the only candidate
- From the above discussion, we see that any new physics satisfying hints we have may show up at the LHC with similar signals
- Michael Peskin's name for different kinds of new heavy particles whose decay chains result in the same final state
- How can we discriminate SUSY from confusion scenarios?
- How do we know new physics is SUSY?

Outline

- New physics beyond the SM is expected to be discovered at the LHC if it exists at TeV scale but will we know what it is?
 - How do you know if it is SUSY?
 - Example: Universal Extra Dimensions (5D)
- How to discriminate UED and SUSY
 - LHC/ILC/Dark matter
- Two Universal Extra Dimensions
 - LHC/ILC/Dark matter
- Measuring masses and spins is important to disentangle at the LHC
 - Improvement on bump hunting, edges in cascade decay, m_{T2}
- Summary

Universal Extra Dimensions

(Appelquist, Cheng, Dobrescu, hep-ph/0012100)

• Universal Extra Dimensions is an extra dimension theory with new bosonic coordinate y (spanning a circle of radius R):

$$\Phi(x^{\mu}, y) = \phi(x^{\mu}) + \sum_{i=1}^{\infty} \left(\phi^n(x^{\mu}) \cos\left(\frac{ny}{R}\right) + \chi^n(x^{\mu}) \sin\left(\frac{ny}{R}\right) \right)$$

• Each SM field ϕ (n=0) has an infinite tower of Kaluza-Klein (KK) partners ϕ^n and χ^n with identical spins, identical couplings and unknown masses of order of n/R:

$$S = \int d^4x dy \mathcal{L}_{SM} = \int d^4x \mathcal{L}_{eff}, \qquad E^2 = \vec{p}^2 + p_5^2 = \vec{p}^2 + \left(\frac{n}{R}\right)^2$$

• Bulk interactions: conserve KK number $\Leftarrow p_y$ conservation

• Problem: chiral fermions?

KK number versus KK parity

• The ED is not really a circle, but orbifold S_1/Z_2 :

• Loop corrections generate boundary terms which break KK number n down to KK parity $(-1)^n$

- Additional allowed decays: $2 \rightarrow 00$, $3 \rightarrow 10$, \cdots
- The lightest KK partner at level 1 (LKP) is stable \Rightarrow DM ?
- No tree-level contributions to precision EW observables/need to pair-produce

UED phenomenology

- EW precision constraints: $R^{-1} \ge 300~{
 m GeV}$ (Appelquist, Cheng, Dobrescu, hep-ph/0012100)
- Current Tevatron limit: $R^{-1} > 280$ GeV in $3\ell + \not\!\!E_T$ channel at 95% C.L. (CDF)
- Region preferred by WMAP: $R^{-1} \sim 500 600$ GeV (Kong, Matchev, hep-ph/0509119, Burnell, Kribs, hep-ph/0509118, Servant, Tait, hep-ph/0206071)

(Cheng, Matchev, Schmaltz, hep-ph/0204342, hep-ph/0205314)

 g_1

Relic Density Code

- Kong and Matchev (UF, 2005)
 - Fortran
 - Includes all level 1 KK particles
 - has a general KK mass spectra (all KK masses are, in principle, different)
 - can deal with different types of KK dark matter (γ_1 , Z_1 , $u_1 \cdots$)
 - improved numerical precision
 - * use correct non-relativistic velocity expansion ($\langle \sigma v \rangle = a + b \langle v^2 \rangle$)
 - $\ast\,$ use temperature dependent degrees of freedom ($g_{st}=g_{st}(T_F)$)
- Servant and Tait (ANL, 2002)
 - First code (γ_1 or ν_1 dark matter)
 - has cross sections in Mathematica, assuming same KK masses
 - use approximate non-relativistic velocity expansion
 - use approximate degrees of freedom ($g_* = 92.25$)
- Kribs and Burnell (Oregon/Princeton, 2005)
 - has cross sections in Maple, assuming same KK masses (γ_1 dark matter)
 - do not use non-relativistic velocity expansion
 - deal with coannihilations with all level 1 KK
- Kakizaki, Matsumoto and Senami (Bonn/KEK/Tokyo, 2006)
 - interested in resonance effects (γ_1 dark matter)

Relic density of KK dark matter

(Kong, Matchev, hep-ph/0509119)

- Improvements in our calculation:
 - Include all coannihilations: many processes $(51 \times 51 \text{ initial states})$
 - Keep KK masses different in the cross sections:
 - Use temperature dependent g_{st}
 - Use relativistic correction in the b-term

- a: $\gamma_1 \gamma_1$ annihilation only (from hep-ph/0206071)
- b: repeats the same analysis but uses temperature dependent g_{*} and relativistic correction
- c: relaxes the assumption of KK mass degeneracy
- MUED: full calculation in MUED including all coannihilations with the proper choice of masses
- Preferred mass range: 500 600 GeVfor $0.094 < \Omega_{CDM} h^2 < 0.129$

Dark matter as a Discriminator

• Predicted positron signals

(Cheng, Feng, Matchev, hep-ph/0207125)

- SUSY: helicity-suppressed annihilation amplitudes
- A peak in the e^+ spectrum:
 - A smoking gun for γ_1 dark matter
 - can rule out neutralinos as the source

Typical event in SUSY and UED

- Both have similar diagrams → same signatures!
 - At first sight, it is not clear which model we are considering
- The decay chain is complicated
- A lot of jets \rightarrow correct jet identification is difficult \rightarrow ISR/FSR add more confusion
- UED discovery reach at the Tevatron and LHC: (Cheng, Matchev, Schmaltz, hep-ph/0205314)
 - Reach at the LHC: $R^{-1} \sim 1.5$ TeV with 100 fb⁻¹ in $4l + E_T$ channel
 - UED search by CMS group (full detector simulation)

How to discriminate:

• Level 1 just looks like MSSM with LSP dark matter:

(Cheng, Matchev, Schmaltz, hep-ph/0205314)

• Can we discriminate SUSY from UED ?

	SUSY	UED
How many new particles	1*	KK tower
Spin of new particles	differ by $\frac{1}{2}$	same spins
Couplings of new particles	same as SM	same ** as SM
Masses	SUSY breaking	boundary terms
Discrete symmetry	R-parity	$KK\text{-parity} = (-1)^n$
Dark matter	LSP $(ilde{\chi}_1^0)$	$LKP\;(\gamma_1)$
Generic signature***	E_T	${\not\!\!\!E}_T$

* $N = 1 \; \mathrm{SUSY}$

** Couplings among some KK particles may have factors of $\sqrt{2},\,\sqrt{3},\,\cdots$

*** with dark matter candidates

- Finding KK tower
- Spin measurements
- Cross section: Datta, Kane, Toharia, hep-ph/0510204

Implementation of UED in Event Generators

- Datta, Kong and Matchev (UF, 2004)
 - Full implementation of level 1 and level 2 in CompHEP/CalcHEP (spin information)
 - Provided for implementation in PYTHIA
 - Two different mass spectrum possible:
 - * A general mass spectrum in Nonminimal UED
 - * All masses/widths calculated automatically in Minimal UED
 - Used for dark matter study/collider studies
 - Used for ATLAS and CMS $(4\ell + \not\!\!\!E_T, nj + m\ell + \not\!\!\!E_T \cdots)$
- Alexandre Alves, Oscar Eboli, Tilman Plehn (2006)
 - Level 1 QCD and decays only in MADGRAPH (spin information!)
- Wang and Yavin (Harvard, 2006)
 - Level 1 QCD and decays only in HERWIG (full spin information)
- Smillie and Webber (Cambridge, 2005)
 - Level 1 QCD and decays only in HERWIG (full spin information)
- Peskin (Stanford, in progress)
 - Level 1 QCD and decays only in PANDORA (full spin information)
- El Kacimi, Goujdami and Przysiezniak (2005)
 - Level 1 QCD and decays only in PYTHIA (spin information is lost)
 - Matrix elements from CompHEP/CalcHEP

UED discovery reach at the Tevatron and LHC

(Cheng, Matchev, Schmaltz, hep-ph/0205314)

• Discovery reach in the $Q_1Q_1 \rightarrow Z_1Z_1 \rightarrow 4l + E_T$ channel

Looking for level 2 KK partners

- n = 1 $(M_1 = \frac{1}{R})$ is like MSSM and can be discovered: look for n = 2 $(M_2 = \frac{2}{R})$
- Production:

- a, b: kinematically suppressed / c: suppressed couplings

- only V_2 have KK number violating couplings to SM
- Q_2 and L_2 : either forbidden or higher dimensional operator
- Decay:

– a: SM particle is soft / b: direct n = 1 production? / c: resonance

Discovery reach for MUED at LHC in inclusive dilepton channel

Two resonances

(Datta, Kong, Matchev, hep-ph/0509246)

- Level 2 resonances can be seen at the LHC:
 - up to $R^{-1} \sim 1$ TeV for 100 fb $^{-1}$, $M^2_{ab} = (p_a + p_b)^2$
 - covers dark matter region of MUED

• Mass resolution:

$$- \, \delta m = 0.01 M_{V_2}$$
 for e^+e^-

$$\delta m = 0.0215 M_{V_2} + 0.0128 \left(rac{M_{V_2}^2}{1TeV}
ight)$$
 for $\mu^+\mu^-$

- Narrow peaks are smeared due to the mass resolution
- Two resonances can be better resolved in e^+e^- channel
- Is this a proof of UED ?
 - Not quite : resonances could still be interpreted as Z's
 - Smoking guns :
 - * Their close degeneracy
 - * $M_{V_2}pprox 2M_{V_1}$ and one single bump in dijet
 - * Mass measurement of W_2^\pm KK mode
- However in nonminimal UED models, degenerate spectrum is not required
 - \rightarrow just like SUSY with a bunch of Z's
 - \rightarrow need spins to discriminate

Spin measurement

- spin measurement is difficult
 - LSP/LKP is neutral \rightarrow missing energy
 - There are two LSPs/LKPs \Rightarrow cannot find CM frame
 - Decay chains are complicated \rightarrow cannot uniquely identify subchains
 - Look for something easy : look for 2 SFOS leptons, \tilde{z}^0 \tilde{z}^+ $\tilde{z}^ \tilde{z}^0$ $\tilde{z}^ \tilde{z}^0$ \tilde{z}^+ \tilde{z}^-

$$\tilde{\chi}_2^0 \to \ell^{\pm} \ell^+ \to \ell^{\pm} \ell^+ \tilde{\chi}_1^0 \text{ or } Z_1 \to \ell \ell_L^1 \to \ell^+ \ell^- \gamma_1$$

- Dominant source of $\tilde{\chi}_2^0/Z_1$: squark/KK-quark decay $\tilde{q} \to q \tilde{\chi}_2^0 \to q \tilde{\ell}^{\pm} \ell^{\mp} \to q \ell^{\pm} \ell^{\mp} \tilde{\chi}_1^0$ or $Q_1 \to q Z_1 \to \ell \ell \ell_L^1 \to \ell^+ \ell^- \gamma_1$:

- Study this chain: Observable objects are q and ℓ^{\pm}
- Can do: $M_{\ell^+\ell^-}$, $M_{q\ell^-}$ and $M_{q\ell^+}$ where $M^2_{ab} = (p_a p_b)^2$
- Which jet? Which lepton? Charge of jets $(q \text{ and } \bar{q})$?

-
$$M_{\ell+\ell-}$$
, Asymmetry = $A^{+-} = \frac{\left(\frac{d\sigma}{dm}\right)_{q\ell} + -\left(\frac{d\sigma}{dm}\right)_{q\ell-}}{\left(\frac{d\sigma}{dm}\right)_{q\ell} + + \left(\frac{d\sigma}{dm}\right)_{q\ell-}}$ (Barr, Phys. Lett. B596:205-212,2004)

• Masses don't discriminate

Dilepton distribution

- Look for spin correlations in $M_{\ell^+\ell^-}$ •
- Choose a study point in one model and fake mass spectrum in the other model •

(Kong, Matchev Preliminary and Smillie, Webber hep-ph/0507170)

• Why are they the same ?

Dilepton distribution

• How do we fake the $M_{\ell^+\ell^-}$ distribution ?

where
$$\hat{m} = \frac{m_{\ell\ell}}{m_{\ell\ell}^{max}}$$
, $y = \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}_2^0}}\right)^2$ and $z = \left(\frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{\ell}}}\right)^2$

• $|r| \leq 0.4$ in mSUGRA

Spin measurement : Barr method

(Barr, Phys. Lett. B596:205-212,2004)

- Invariant mass distribution of q and ℓ (near) $-\frac{dP_{PS}}{d\hat{m}}=2\hat{m}$ from phase space $-\frac{dP_1}{d\hat{m}}=4\hat{m}^3$ for l^+q or $l^-\bar{q}$ in SUSY $-\frac{dP_2}{d\hat{m}}=4\hat{m}(1-\hat{m}^2)$ for l^-q or $l^+\bar{q}$ in SUSY $-\hat{m} = \frac{m_{lq}^{near}}{\left(m_{la}^{near}\right)_{max}}$
- Complications:
 - Which jet? Which lepton?
 - We don't distinguish q and \bar{q}
- Asymmetry:

$$A^{+-} = \frac{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} - \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} + \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}$$

Asymmetry

• Asymmetry with UED500 mass spectrum

-0.4 └─ 0

20

40

M_{ql}

60

 $(\mathcal{L} = 10 \text{fb}^{-1})$

• Asymmetry with SPS1a mass spectrum $(\mathcal{L} = 10 \text{fb}^{-1})$

-0.4 0

100

200

M_{ql}

300

"Detector level" Asymmetry

(Smillie, Webber hep-ph/0507170)

- UED500 mass spectrum:
- $(\mathcal{L}=7\mathrm{fb}^{-1})$

• SPS1a mass spectrum: $(\mathcal{L} = 131 \text{fb}^{-1})$

SPS1a mSUGRA point

(Kong, Matchev Preliminary)

• How to fake SPS1a asymmetry - five parameters in asymmetry : f_q , x, y, z, $m_{\tilde{q}}$ - three kinematic endpoints : m_{qll} , m_{ql} and m_{ll} $* m_{qll} = m_{\tilde{q}} \sqrt{(1-x)(1-yz)}$ $m_{ql} = m_{\tilde{q}} \sqrt{(1-x)(1-z)}$ $m_{ll} = m_{\tilde{q}} \sqrt{x(1-y)(1-z)}$ - two parameters left : f_q , x– minimize χ^2 in the (x, f_q) parameter space - minimum χ^2 when UED and SUSY masses are the same and $f_a \approx 1$ • 10% jet energy resolution + statistical error $\rightarrow \chi^2$ better but not enough to fake SPS1a in UED • effect of wrong jets \rightarrow asymmetry smaller ? Flavor subtraction? (work in progress)

$$x = \left(\frac{m_{\tilde{\chi}_2^0}}{m_{\tilde{q}}}\right)^2, \ y = \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}_2^0}}\right)^2, \ z = \left(\frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{\ell}}}\right)^2, \ f_q = \frac{N_q}{N_q + N_{\tilde{q}}}, \ f_{\tilde{q}} = \frac{N_{\tilde{q}}}{N_q + N_{\tilde{q}}}, \ f_q + f_{\bar{q}} = 1$$

Other particles

- Gluino spin with three-body decays, arXiv:0707.0014, Csaki, Heinonen, Perelstein
- Gluino spin using Barr method, hep-ph/0605067, Alves, Eboli, Plehn
- Top partner, hep-ph/0601124, Meade, Reece
- Slepton spin, hep-ph/0511115, Barr

Two Universal Extra Dimensions on Chiral Square

- Motivation:
 - Possible to avoid proton decay (Appelquist, Dobrescu, Ponton hep-ph/0107056)
 - To cancel anomalies \rightarrow 3 generations (Dobrescu, Poppitz hep-ph/0102010)
- Chiral Square \rightarrow (n,m) KK-mode (Dobrescu, Ponton, hep-th/0401032) (Burdman, Dobrescu, Ponton, hep-ph/0506334) (Ponton, Wang, hep-ph/0512304)
- Different dark matter candidate: $B_H^{(1,0)}$ (Burdman, Dobrescu, Ponton, hep-ph/0601186)

-
$$A_M^a = (A_\mu^a, A_5^a, A_6^a)$$

- $A_H^a \sim A_5^a - iA_6^a$ survives: a physical degree of freedom
- $A_C^a \sim A_5^a + iA_6^a$ eaten: NGB

• $B_{H}^{(1,0)}$ self-annihilation: All fermion final states are suppressed by their mass

Longer cascade decays

(Dobrescu, Kong, Mahbubani, hep-ph/0703231)

 \mathbf{Z}_{1}

- Explore different phenomenology: (1,0) mode with $M_{(1,0)} \sim \frac{1}{R}$
 - Spinless Adjoints: uneaten NGB, G_H , W_H and B_H
 - B_H : the lightest assuming the same BC as 5D
 - Tree-level 3-body decays \rightarrow two leptons
 - One-loop 2-body decay \rightarrow a photon
 - GMSB?

g₁

Two Universal Extra Dimensions on Chiral Square

(Dobrescu, Hooper, Kong, Mahbubani, arXiv:0706.3409)

- $\bullet \ R^{-1} < 600 \ {\rm GeV}$
- Light higgs requires light KK particles
 → large production cross-sections at the LHC/Tevatron

Leptons/Photons in Two Universal Extra Dimensions

Resonances in Two Universal Extra Dimensions

(Burdman, Dobrescu, Ponton, hep-ph/0601186)

- (1,1) mode: $M_{(1,1)} \sim \frac{\sqrt{2}}{R}$
 - (1,1) mode is lighter than (2,0) mode
 - Three (neutral) gauge bosons: $G_{\mu}^{(1,1)}$, $W_{\mu}^{(1,1)}$, $B_{\mu}^{(1,1)}$
 - * Loop-induced couplings \rightarrow lepto-phobic
 - * $Br(W^{(1,1)}_{\mu}, B^{(1,1)}_{\mu} \to \ell^+ \ell^-) \sim 1\%$
 - Three (neutral) spinless adjoints: $G_{H}^{(1,1)}$, $W_{H}^{(1,1)}$, $B_{H}^{(1,1)}$
 - * Derivative coupling, $\bar{q}\gamma^{\mu}q\partial_{\mu}X^{(1,1)}_{H} \rightarrow Br(X^{(1,1)}_{H} \rightarrow t\bar{t}) = 1$
- 5 resonances in $t\bar{t}$: $(Br(G^{(1,1)}_{\mu} \rightarrow t\bar{t}) \text{ is small})$
 - But only 3 may be resolved: * $G_H^{(1,1)} + W_\mu^{(1,1)3} \sim 1.1 \frac{\sqrt{2}}{R}$ * $B_\mu^{(1,1)} + W_H^{(1,1)3} \sim 0.97 \frac{\sqrt{2}}{R}$ * $B_H^{(1,1)} \sim 0.86 \frac{\sqrt{2}}{R}$ - Top reconstruction? - Jet-energy resolution? - B-tagging? - A single bump with $\frac{\Gamma}{M} \sim 0.1$?

Discovering resonances: bump hunting

• Our first glimpse of new physics may be

due to the production of a single new particle

- Z', W', vector-like quarks, \cdots
- Color octet spin-1 particles are present in many models : G'_{μ}

(techni-color, topcolor, extra dimensional models)

• Current Tevatron limit on dijet mass:

 $M_G > 1 {
m ~TeV}$

(assuming same coupling as the gluon)

Massive color-octet bosons and pairs of resonances at hadron colliders

(Dobrescu, Kong, Mahbubani, arXiv:0709.2378)

- Motivation and idea:
 - Strong interaction at hadron colliders \rightarrow large cross section
 - Dijet search is model-dependent
 - A light coloron/axi-gluon is already ruled out
 - Is model-independent bump search possible?
- $SU(3)_1 \times SU(3)_2 \rightarrow SU(3)_c$ always contains heavy color octets that couple to the standard model gluon in pairs with the same strength as QCD
- Bump hunting is not always easy!
- Need dedicated search to find it!

Massive color-octet bosons and ····

- Lessons:
 - Di-jet resonance may not be seen in di-jet channel
 - Bump hunting may not be easy and need dedicated search to find it!

How do we measure masses?: cascade decays!

• Cascade decays! (Bachacou, Ian Hinchliffe, Paige, hep-ph/9907518)

Myth of SPS1a (Burns, Kong, Lee, Matchev, Park, Preliminary)

- 12 kinematic region, 3 incompatible solutions (Gjelsten, Miller, Osland, hep-ph/0410303)
- Inversion from observables to masses: 9 solutions
- SPS1a gives unique solution
- What if the nature is not SPS1a? → keep the same on-shell decay chain but allow all possible masses → unique solution 75% of the time but two solutions 25% of the time: (2,3)-(3,2), (2,3)-(3,1), (4,3)-(3,2), (4,3)-(3,1)
- Two-fold ambiguity can be resolved

What if there are two missing particles?: m_{T2}

(Barr, Lester, Stephens, hep-ph/0304226, "m(T2): The Truth behind the glamour")

(Lester, Summers, hep-ph/9906349)

What if there are two missing particles?: m_{T2}

(Barr, Lester, Stephens, hep-ph/0304226, "m(T2): The Truth behind the glamour")

$$m_{\tilde{l}}^2 \ge m_{T2}^2 \equiv \min_{\vec{q}_1 + \vec{q}_2 = \vec{E}_T} \left[\max\left\{ m_T^2(\vec{p}_1, \vec{q}_1), m_T^2(\vec{p}_2, \vec{q}_2) \right\} \right] \ge m_{\tilde{\chi}_1^0}^2$$

- Rely on momentum scan \rightarrow can be reduced to one dimensional parameter scan \rightarrow can not get analytic differential distribution
- Have to assume $m_{\tilde{\chi}^0_1} \to$ correlation between $m_{\tilde{l}}$ and $m_{\tilde{\chi}^0_1}$

(Kong, Matchev, Preliminary)

ullet massless case (m=0): WW production, $m_{\tilde{\chi}^0_1} << m_{\tilde{\ell}}$

$$2a \equiv p_1 - p_2 = q_2 - q_1$$

 $2c \equiv \not\!\!\!E_T$
 $e = rac{c}{a}$

- Solution: $ec{q_1} = -ec{p_2}$ and $ec{q_2} = -ec{p_1}$
- Warning: $\vec{q_1}$ and $\vec{q_2}$ are NOT neutrino momenta

(Kong, Matchev, Preliminary)

• massive case
$$(m \neq 0)$$

num = $16 e (1 + (-1 + e^2) \mu^2)^{\frac{3}{2}} (e + \cos(\phi)) (1 + e \cos(\phi)) \sin(\phi)^2$
+ $4 (1 + (-1 + e^2) \mu^2) (-2 (1 + e^2 + e^4) - (-1 + e) (1 + e) (2 + e^4) \mu^2$
- $4 e (1 + e^2 + (-1 + e^2) \mu^2) \cos(\phi) + e^2 (-2 + (2 - 3 e^2 + e^4) \mu^2) \cos(2\phi)) \sin(\phi)^2$
den = $-8 (1 + 4 e^2 + e^4) - 4 (2 + e^2) (-2 - 5 e^2 + 2 e^4) \mu^2 + (-8 - 16 e^2 - 12 e^4 + 4 e^6 - 3 e^8) \mu^4$
- $8 e (4 (-1 + \mu^2)^2 + 2 e^2 (2 - 3 \mu^2 + \mu^4) + e^4 (\mu^2 + \mu^4)) \cos(\phi)$
+ $4 e^2 (-4 + 2 (6 + e^2 + e^4) \mu^2 + (-8 + 2 e^2 - 2 e^4 + e^6) \mu^4) \cos(2\phi)$
+ $e^3 \mu^2 (8 (2 + e^2 + (-2 + e^2) \mu^2) \cos(3\phi) + e (4 - (-2 + e^2)^2 \mu^2) \cos(4\phi))^4$
 $\sin^2 \theta = \frac{num}{den}$

(Kong, Matchev, Preliminary)

• Applications:

• $N = \sigma \times BR \times \mathcal{L} \times \epsilon = \text{fixed}$ - $\sigma > \sigma_0(BR = 1) \rightarrow m < m_0$

Recent progress on m_{T_2}

- arXiv:0709.0288 by Cho, Choi, Kim, Park, Measuring superparticle masses at hadron collider using the transverse mass kink
- arXiv:0708.1028 by Lester, Barr, MTGEN: Mass scale measurements in pair-production at colliders
- arXiv:0709.2740 by Gripaios, Transverse observables and mass determination at hadron colliders.
- arXiv:0711.4008 by Barr, Gripaios, Lester, Weighing Wimps with Kinks at Colliders: Invisible Particle Mass Measurements from Endpoints.
- arXiv:0711.4526 by Cho, Choi, Kim, Park, Gluino Stransverse Mass

• • • •

Summary and conclusion

- LHC is finally coming
- New physics beyond the SM is expected to be discovered but how do we know what we see is what we expect to see?
- Many candidates for new physics have similar signatures at the LHC (SUSY, UEDs, T-parity...).
- Crucial to know spin information of new particles.
 - Spin information has something to do with shapes
 - Good understanding of SM background
 - Important to know mass spectrum
- Need to develop new methods: $m_{T2}...$

Back up slides

Universal Extra Dimensions

(Appelquist, Cheng, Dobrescu, hep-ph/0012100)

- Each SM particle has an infinite number of KK partners
 - The number of KK states = ΛR (Λ is a cut-off)
- KK particle has the same spin as SM particle with a mass, $\sqrt{rac{n^2}{R^2}+m^2}$
 - SM particles became massive through electroweak symmetry breaking
 - KK gauge bosons get masses by eating 5th components of gauge fields (Nambu-Goldstone bosons) and EWSB shifts those masses
- All vertices at tree level satisfy KK number conservation

 $|m \pm n \pm k| = 0$ or $|m \pm n \pm k \pm l| = 0$

- KK number conservation is broken down to KK-parity, $(-1)^n$, at the loop level
 - The lightest KK partner at level 1 (LKP) is stable \Rightarrow DM ?
 - KK particles at level 1 are pair-produced
 - KK particles at level 2 can be singly produced
 - Additional allowed decays: $2 \rightarrow 00$, $3 \rightarrow 10$, $\cdot \cdot \cdot$
 - No tree-level contributions to precision EW observables
- New vertices are the same as SM interactions
 - Couplings between SM and KK particles are the same as SM couplings
 - Couplings among KK particles have different normalization factors
- There are two Dirac (KK) partners at each level n for one Dirac fermion in SM

UED vs. SUSY

	SUSY	UED
Field	$\Phi(x^{\mu}, heta, heta^{*})$	$\Phi(x^{\mu},y^{i})$
Symmetry	Supersymmetry	5D Lorentz and gauge symmetry
		(broken by compactification
		and boundary interactions)
Component fields	(SM, Superpartner)	(SM, KK partners)
	Φ in terms of $ heta$ and $ heta^*$	Φ in terms of bases
		$(\exp(y), \cos(y), \sin(y))$
Spins	differ by $\frac{1}{2}$	same spins
\mathcal{L}_{eff}	$\int d heta d heta^* S[\Phi(x, heta, heta^*)]$	$\int dy S[\Phi(x,y)]$
Discrete symmetry $\rightarrow DM$	R-parity	KK -parity = $(-1)^n$
# of parameters	many (soft terms)	many (boundary terms)
	5 in MSUGRA	2 in MUED (R, Λ)
Gauge bosons	maybe	KK partners of SM gauge bosons
Renormalizability	Yes	No

• Two theories look very similar - UED referred to as "Bosonic Supersymmetry" (Cheng, Matchev, Schmaltz hep-ph/0205314)

Dark matter in nonminimal UED

• The change in the cosmologically preferred value for R^{-1} as a result of varying the different KK masses away from their nominal MUED values (along each line, $\Omega h^2 = 0.1$)

• In nonminimal UED, Cosmologically allowed LKP mass range can be larger – If $\Delta = \frac{m_1 - m_{\gamma_1}}{m_{\gamma_1}}$ is small, m_{LKP} is large, UED escapes collider searches \rightarrow But, good news for dark matter searches

CDMS (Spin independent): B_1 and Z_1 **LKP**

(Baudis, Kong, Matchev, Preliminary)

$$-\Delta_1 = 0.1$$

Branching fractions of level 2 Gauge Bosons

- γ_2 : almost Lepto-phobic
- $\gamma_2 + Z_2 + g_2 \rightarrow$ one single bump in dijet

Production/Widths of level 2 Gauge Bosons

• Indirect production is important

Branching Ratios of level 2 KK quarks

(Datta, Kong, Matchev, hep-ph/0509246)

- Large Branching ratios into level 2 gauge bosons
 - $-BR(Q_2 \rightarrow Z_2Q_0) \ge 25\%$
 - $BR(Q_2 \rightarrow \gamma_2 Q_0) \ge 3\%$
 - $BR(q_2 \rightarrow \gamma_2 Q_0) \approx 50\%$
 - $BR(g_2 \to Q_2Q_0 + q_2q_0) \approx 50\%$

Barr method

- Look at correlation between q and ℓ (Barr, hep-ph/0405052)
- Complications:
 - Which (quark) jet is the right one ?
 - (Webber, hep-ph/0507170 "cheated", picked the right one)
 - One never knows for sure. There can be clever cuts to increase the probability that we picked right one
 - (work in progress)
 - Which lepton ? : "near" and "far" cannot be distinguished
 - \rightarrow must add both contributions. Improvement on selection (work in progress)
 - Don't know q or \bar{q}
 - But more q than \bar{q} at the LHC in t-channel production
- Can distinguish charge of leptons: look at $q\ell^+$ and $q\ell^-$ separately and compare

Barr method

• $f_q + f_{\bar{q}} = 1$

Barr method

(Datta, Kong, Matchev, hep-ph/0509246 and Smillie, Webber, hep-ph/0507170)

- Choose a study point : UED500 and SPS1a ($\mathcal{L} = 10 f b^{-1}$)
- Each $M_{q\ell}$ distribution contains 4 contributions

$$\left(\frac{d\sigma}{dm}\right)_{q\ell^+} = f_q \left(\frac{dP_2}{dm_n} + \frac{dP_1}{dm_f}\right) + f_{\bar{q}} \left(\frac{dP_1}{dm_n} + \frac{dP_2}{dm_f}\right)$$
$$\left(\frac{d\sigma}{dm}\right)_{q\ell^-} = f_q \left(\frac{dP_1}{dm_n} + \frac{dP_2}{dm_f}\right) + f_{\bar{q}} \left(\frac{dP_2}{dm_n} + \frac{dP_1}{dm_f}\right)$$

• Asymmetry:

$$A^{+-} = \frac{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} - \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}{\left(\frac{d\sigma}{dm}\right)_{q\ell^+} + \left(\frac{d\sigma}{dm}\right)_{q\ell^-}}$$

- $f_q + f_{\bar{q}} = 1$
- If $f_q = f_{\bar{q}} = 0.5$, $A^{+-} = 0$ (for example, in the "focus point" region)

How do we measure masses?: bump hunting!

(Datta, Kong, Matchev, hep-ph/0509246)

- Bump hunting!: ex. two resonances in UEDs
- Level 2 resonances can be seen at the LHC:
 - up to $R^{-1} \sim 1$ TeV for 100 fb⁻¹, $M_{ab}^2 = (p_a + p_b)^2$
 - covers dark matter region of MUED
- Mass resolution:

$$\delta m = 0.01 M_{V_2}$$
 for e^+e^-

$$-\delta m = 0.0215 M_{V_2} + 0.0128 \left(rac{M_{V_2}^2}{1TeV}
ight)$$
 for $\mu^+\mu^-$

- Narrow peaks are smeared due to the mass resolution
- Two resonances can be better resolved in e^+e^- channel
- Is this a proof of UED ?
 - Not quite : resonances could still be interpreted as Z's
 - Smoking guns :
 - * Their close degeneracy
 - * $M_{V_2} \approx 2M_{V_1}$
 - * Mass measurement of W_2^\pm KK mode
- However in nonminimal UED models, degenerate spectrum is not required \rightarrow just like SUSY with a bunch of Z's \rightarrow need spins to discriminate

Myth of SPS1a

(Burns, Kong, Lee, Matchev, Park, Preliminary)

• Can we distinguish near leptons from far leptons?

- Lose statistics
- Can we improve on spin measurement?

What if there are two missing particles?: m_{T2}

(Barr, Lester, Stephens, hep-ph/0304226, "m(T2): The Truth behind the glamour")

(Lester, Summers, hep-ph/9906349)

$$m_{\tilde{\ell}}^{2} = m_{\tilde{\chi}_{1}^{0}}^{2} + 2 \left[E_{T}^{\ell} E_{T}^{\tilde{\chi}_{1}^{0}} \cosh\left(\Delta\eta\right) - \vec{p}_{T}^{\ell} \cdot \vec{p}_{T}^{\tilde{\chi}_{1}^{0}} \right]$$
$$E_{T}^{\ell} = |p_{T}|$$
$$E_{T}^{\tilde{\chi}_{1}^{0}} = \sqrt{\left(\vec{p}_{T}^{\tilde{\chi}_{1}^{0}}\right)^{2} + m_{\tilde{\chi}_{1}^{0}}^{2}}$$
$$\eta = \frac{1}{2} \log \left[\frac{E + p_{z}}{E - p_{z}} \right]$$

$$(\tanh \eta = \frac{p_z}{E}, \sinh \eta = \frac{p_z}{E_T} \text{ and } \cosh \eta = \frac{E}{E_T})$$

$$m_T^2 \left(\vec{p}_T^{\ell}, \vec{p}_T^{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^0} \right) \equiv m_{\tilde{\chi}_1^0}^2 + 2 \left(E_T^{\ell} E_T^{\tilde{\chi}_1^0} - \vec{p}_T^{\ell} \cdot \vec{p}_T^{\tilde{\chi}_1} \right)$$

$$m_T \leq m_{\tilde{\ell}}$$

- We don't measure $ec{p}_T^{ ilde{\chi}_1^0}$
- Most of new physics have at least two missing particles in the final state

- good: uniform scan
- bad: how far should we scan? $0 \le |q_{1x}|, |q_{1y}| \le \#|p_1|$

•
$$\vec{q_1} + \vec{q_2} = \vec{\not\!\!\!E_T}$$

- bad: non-uniform scan
- good: compact scan $|q_2| \leq |q_1|, \ 0 \leq \theta_2 \leq 2\pi$

(Kong, Matchev, Preliminary)

Kolmogorov-Smirnov Test

(Kong, Matchev, Preliminary)

- Is there another mass measurement?
- KS test?

- Difficulties:
 - Not enough statistics
 - Cuts distort shapes of the distributions

SUSY vs UED at LC in $\mu^+\mu^- + E_T$ channel

• Angular distribution

$$\left(\frac{d\sigma}{d\cos\theta}\right)_{UED} \sim 1 + \frac{E_{\mu_1}^2 - M_{\mu_1}^2}{E_{\mu_1}^2 + M_{\mu_1}^2} \cos^2\theta \qquad \left(\frac{d\sigma}{d\cos\theta}\right)_{SUSY} \sim 1 - \cos^2\theta$$
$$\sim 1 + \cos^2\theta$$

- μ^- energy distribution
- Threshold scan
- Photon energy distribution

The Angular Distribution (LC)

(Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041)

The μ Energy Distribution (LC)

(Battaglia, Datta, De Roeck, Kong, Matchev,hep-ph/0502041)

Threshold scans (LC)

(Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041)

- Mass determination
- Cross section at threshold
 - in UED $\propto\beta$

- in MSSM
$$\propto \beta^3 \left(\beta = \sqrt{1 - \frac{M^2}{E_{beam}^2}}\right)$$

The Photon Energy Distribution (LC)

(Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041)

- \bullet Smuon production is mediated by γ and Z
- On-shell $Z_2 \rightarrow \mu_1 \bar{\mu}_1$ is allowed by phase space

 ${}^{\mu}D_{1}$

 $\mu_{D_{1}}^{+}$

• Radiative return due to Z_2 pole at

$$E_{\gamma} = \frac{s - M_{Z_2}^2}{2\sqrt{s}}$$

The Angular Distribution at the LHC

- If we simply do the same trick as in linear collider, it doesn't work
- There is no fixed CM frame

Exact Beamstrahlung Function Required

- Analytic solutions are limited for small Υ only
 - Good agreement with simulation data
 - This is true for LC 500-1000
- Can't use same solution for large Υ
 - Need new approximation \rightarrow No analytic solution for large Υ in the case of high energy e^+e^- colliders such as CLIC
 - Solve rate equation numerically instead or
 - Use simulation data
- Caution : Implementation in event generators
 - Most event generators have one of these two parametrizations
 - Either numerically worse or has normalization problem
 - How to fix the event generator
 - * Use old parametrizations and fake parameters
 - * Use numerical solution/simulation data and import in the event generator
- A lot of soft photons at high energy e^+e^- colliders distort physical distributions, e.g. E_μ