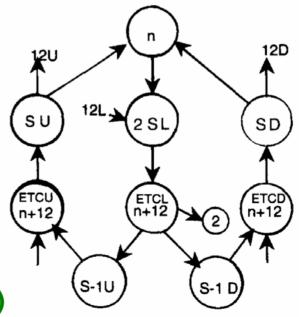

Flavor Models in Warped Extra Dimensions

Csaba Csáki (Cornell)

2008 Aspen Winter Conference

GIM: hep-ph 0709:1714 with G. Cacciapaglia, J.Galloway, G. Marandella, J. Terning, A. Weiler

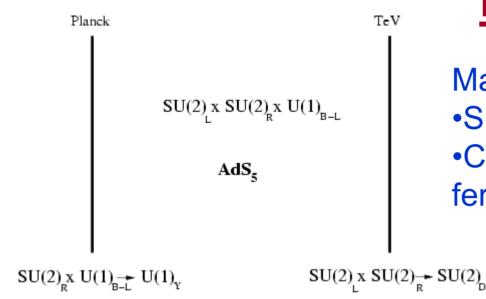
Shining: in progress with Y. Grossman, G. Perez, Z. Surujon and A. Weiler


1. GIM Mechanism in Extra Dimension

G.Cacciapaglia, J.Galloway, G.Marandella, J.Terning, A.Weiler, C.C.

Motivation:

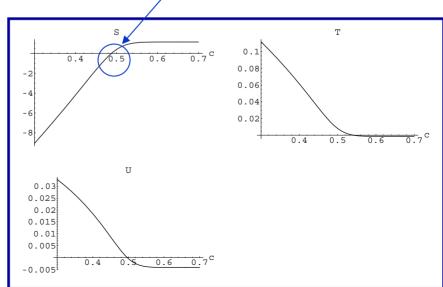
- Technicolor dual to extra dimensional setup
- Very difficult to protect from FCNC


•Best known model:

(L.Randall 1993)

Extra dimensional TC model:

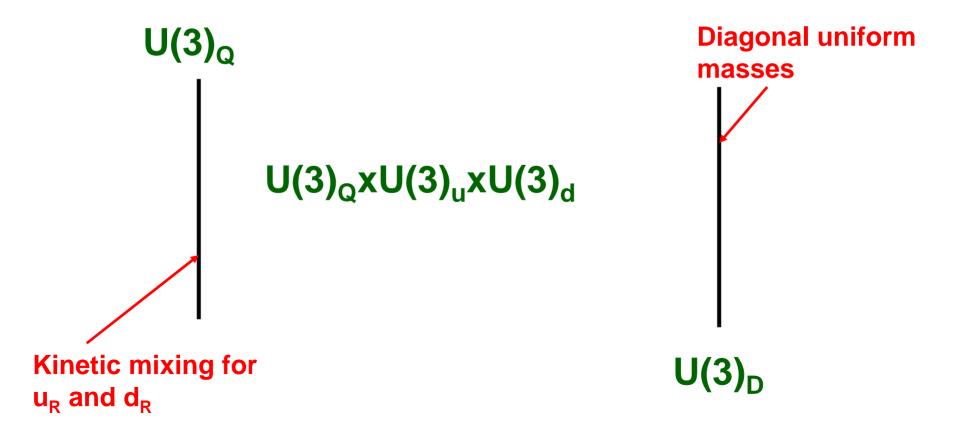
Higgsless EWSB



Main issue:

- S parameter large
- •Can tune S away by making fermions flat in extra dim.

For flat fermions:


- no natural protectionfrom FCNC
- need GIM mechanism

GIM mechanism in extra dimension

- Flavor symmetry in bulk
- TeV brane masses universal
- Flavor violation only on Planck brane

Wave fn's flavor universal!

In neutral current sector:

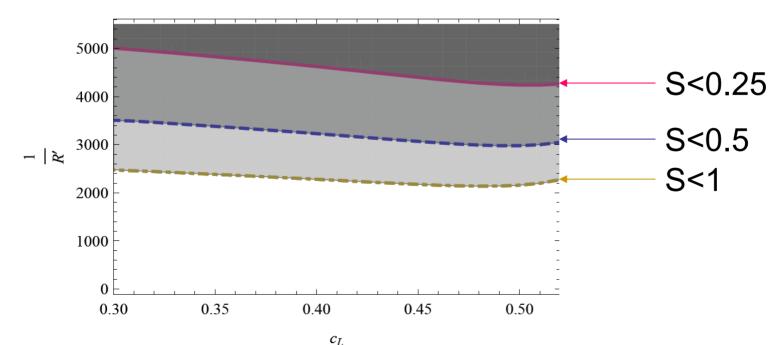
- •In bulk: $U(3)_L^u x U(3)_L^d x U(3)_R^u x U(3)_R^d$ symmetry
- •On TeV brane U(3)_D^uxU(3)_D^d due to masses
- Can use SU(3) matrix in u and d sector to diagonalize kinetic mixing on Planck brane
- •Diagonal but non-uniform kinetic terms: U(1)^uxU(1)^dxU(1)^cxU(1)^sxU(1)^txU(1)^b global symmetry
- •Symmetry protects from FCNC, <u>even due</u> to Z', g', etc

In charged current sector:

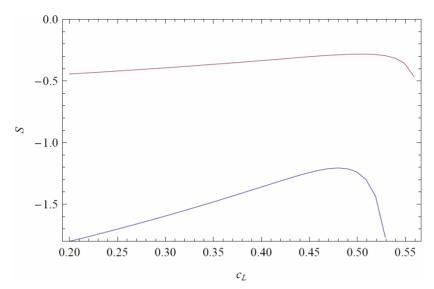
- Separate U(1) symmetries broken: CKM mixing generated
- Parameter count for N generations:
- •2 hermitian kinetic matrices: 2N²=N(N+1) real+ N(N-1) phases
- Remove parameters of SU(N)

matrix:

•Remaining:


 $N^2-1=N(N-1)/2 \text{ real}+$ (N-1)(N+2)/2 pha. 2N+N(N-1)/2 real

(N-1)(N-2)/2 phase


Just like ordinary CKM mechanism!

Application to models

- •For 1st and 2nd generation: wave function corrections ∞(m_c R')² tiny corrections
- •For 3rd generation (m_tR')² large, even R'~ TeV will give ~ 1% corrections to couplings, or S~1

S does not vanish for any c_L

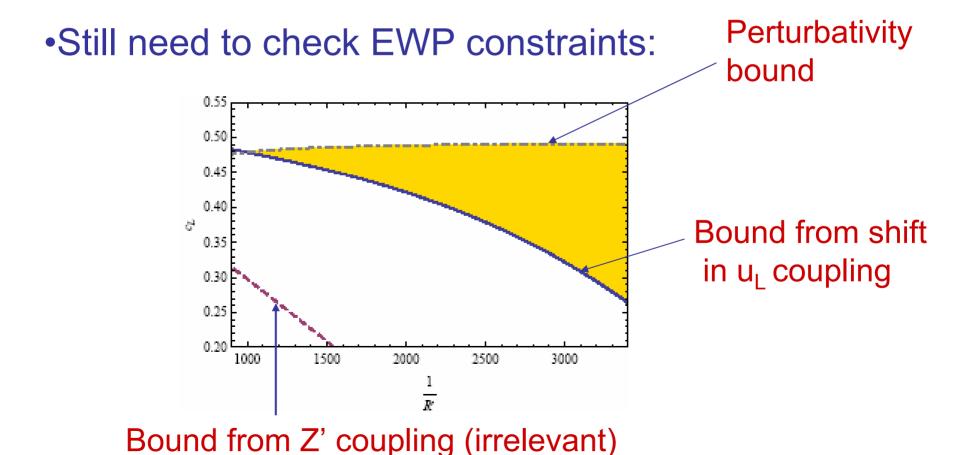
- •For Higgsless: S is tuned anyway via c_L.
- Just add an IR brane localized kinetic term

$$F^L_{\mu\nu}F^R_{\mu\nu}$$

- Still just one total tuning...
- •But for RS1, MCH don't want tuning.

- Need to decouple 3rd generation mass
- •Nice solution proposed by Agashe, Contino, daRold Pomarol: use different reps under SU(2)_LxSU(2)_R

	$SU(2)_L$	$SU(2)_R$	$U(1)_{X}$
Q_L			$\frac{2}{3}$
t_R	1	1	<u>2</u> 3
b_R	1		$\frac{2}{3}$


Model 1

- Use new reps for all three generations
- •Break U(3)_u in bulk, different c_R's for u_R
- •Mass terms on IR brane:

$$Q_L^s \left(egin{array}{ccc} m_u & & & \ & m_c & & \ & & m_t \end{array}
ight) t_R + m_b Q_L^t \left(egin{array}{ccc} 1 & & & \ & 1 & \ & & 1 \end{array}
ight) b_R$$

KEY: large flavor breaking in up sector U(3)→U(1)³ does not get communicated to down sector since t_R mass is a singlet now

- •U(3)_d unbroken in IR
- •If assume flavor from down-type kinetic mixing: no FCNC at all (GIM mechanism)

A sample point

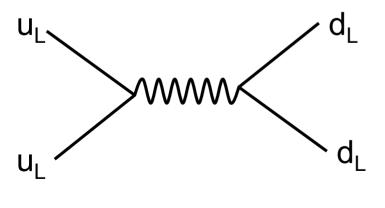
u	$\gamma_L^u = -3.1$	$\omega_L = -0.48$	$\gamma_R^u = 0.76$	$\omega_{R} < 10^{-7}$
d	$\gamma_L^d=$ 1.4		$\gamma_R^d = -0.012$	
С	$\gamma_L^c = -3.1$	$\omega_L = -0.48$	$\gamma_R^c =$ 0.76	$\omega_R < 10^{-3}$
S	$\gamma_L^s=1.4$		$\gamma_R^s = -0.016$	
t	$\gamma_L^t = -3.9$	$\omega_L = -0.85$	$\gamma_R^t =$ 20	$\omega_R = -2.2$
b	$\gamma_L^{\overline{b}}=1.4$		$\mid \gamma_R^b = -7.1$	

$$1/R'=1.5 \text{ TeV}, c_L=0.47, c_R=-0.51, c_{tR}=+1$$

γ,ω are per mille deviations from SM couplings:

$$\begin{split} g_{f_L}^Z &= (1 + \gamma_L^f) \frac{g}{\cos \theta_W} (T_3 - \sin^2 \theta_W Q) \\ g_{f_L}^W &= (1 + \omega_L^f) g \end{split}$$

Model 2


- Use new reps only for 3rd generation
- Clearly no problem with EWPO, Zbb vertex
- •But now FCNC is generated since bulk no longer symmetric. We still have SU(2) symmetry for 1-2 gen.
- In up sector: kinetic mixing affects only 1-2 gen: no FCNC
- •In down sector: b_R on UV brane, mixing: FCNC
- •Structure of FCNC's:

$$g_{Zds} \sim V_{td}V_{ts}\delta$$
 $g_{Zdb} \sim V_{td}\delta$
 $g_{Zsb} \sim V_{ts}\delta$

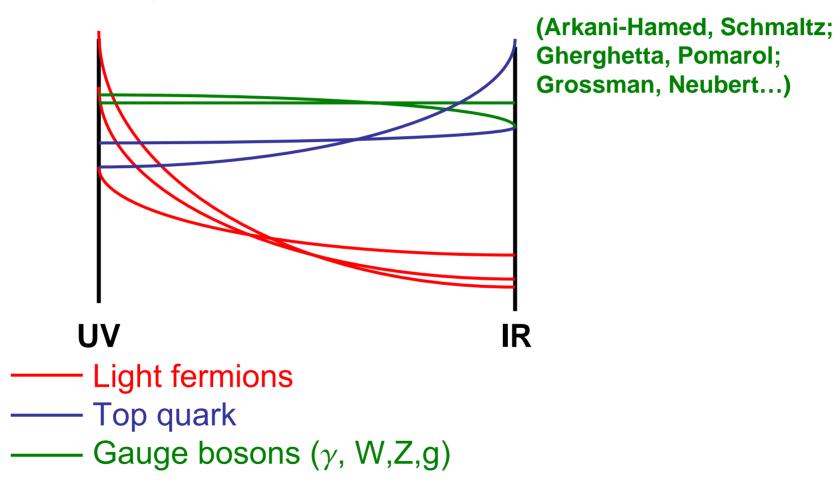
•Z', g' OK for M_{Z'}=3 TeV

Flavor gauge bosons

- Expect bulk symmetries to be gauged
- •U(3)_R broken in UV no light state (only KK)
- •U(3)_Q remains till IR light mode ~ 1/(R'² log R'/R)
- •Does it induce FCNC's?

Not really FCNC, but like CC...

$$-\frac{g_Q^2}{2M_{W_Q}^2} \left[V_{in} \bar{u}_\ell^i \gamma_\mu d_\ell^n \right] \left[V_{kj}^\dagger \bar{d}_\ell^k \gamma_\mu u_\ell^j \right]$$


Shining of flavor with solution to flavor puzzle

(in progress with Grossman, Perez, Surujon, Weiler)

- •Till now: avoided FCNC's but did not explain flavor
- Try to find a 5D model of flavor w/o large FCNC's

Flavor from 5D RS models:

Usually via wavefunction overlap

Gives usual RS flavor models:

Fermion masses suppressed by

$$f^2 = \frac{\frac{1}{2} - c}{1 - (\frac{R}{R'})^{1 - 2c}}$$

$$m_{ij}^{(u)} = \underbrace{Y_{uij}}_{\sqrt{2}} \underbrace{f_{Q_i} f_{uj}}_{\text{Prane}}$$
Brane
$$m_{ij}^{(d)} = \underbrace{Y_{dij}}_{\sqrt{2}} \underbrace{f_{Q_i} f_{dj}}_{\text{Yukawas}}$$

Relations between masses and angles automatic

Flavor	f_Q^{-1}	f_u^{-1}	f_d^{-1}
I	$\frac{\lambda^3}{f_Q$ 3 $\sim 0.4 imes 10^{-2}$	$\frac{m_u f_{u3}^{-1}}{m_t \lambda^3} \sim 10^{-3}$	$\frac{m_d}{m_b} \frac{f_{d^3}^{-1}}{\lambda^3} \sim 10^{-3}$
II	$rac{\lambda^2}{f_Q$ 3 $\sim 2 imes 10^{-2}$	$\frac{m_c}{m_t} \frac{f_u^{-1}}{\lambda^2} \sim 10^{-1}$	$\frac{m_s}{m_b} \frac{f_{d^3}^{-1}}{\lambda^2} \sim 0.3 \times 10^{-2}$
III	$\frac{f_u 3 m_t}{v \lambda_{5D} k} \sim \frac{1}{3}$	$O\left(\frac{5}{6}\right)$	$\frac{m_b}{m_t} f_{u^3}^{-1} \sim 0.6 \times 10^{-2}$

FCNC's also automatically suppressed (RS-GIM), but may not be enough:

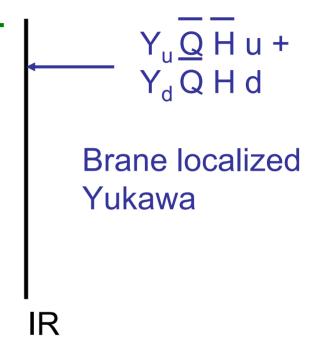
Parameter	95% allowed range	Lower limit on Λ (TeV)
$\overline{ReC^1_K}$	$[-9.6, 9.6] \cdot 10^{-13}$	$1.0 \cdot 10^3$
$Re C_K^{\widehat{Z}}$	$[-1.8, 1.9] \cdot 10^{-14}$	$7.3 \cdot 10^3$
$Re C_K^{\widehat{\mathfrak{Z}}}$	$[-6.0, 5.6] \cdot 10^{-14}$	$4.1 \cdot 10^3$
$Re C_K^{ superator}$	$[-3.6, 3.6] \cdot 10^{-15}$	$17 \cdot 10^3$
$Re C_K^{5}$	$[-1.0, 1.0] \cdot 10^{-14}$	$10 \cdot 10^3$
$\overline{{ m Im}C_K^1}$	$[-4.4, 2.8] \cdot 10^{-15}$	$1.5\cdot 10^4$
${ m Im} C_K^{f \overline 2}$	$[-5.1, 9.3] \cdot 10^{-17}$	$10 \cdot 10^4$
$\operatorname{Im} C_K^{{rac{{rac{{rac{{rac{{rac{{rac{{rac{{}}}}}{{2}}}}{{2}}}}{{2}}}}$	$[-3.1, 1.7] \cdot 10^{-16}$	$5.7 \cdot 10^4$
$\operatorname{Im} C_K^{rac{2}{4}}$	$[-1.8, 0.9] \cdot 10^{-17}$	$24 \cdot 10^4$
${ m Im} C_K^{f 5}$	$[-5.2, 2.8] \cdot 10^{-17}$	$14 \cdot 10^4$

Bounds from Δm_{κ}

Bound 2-105 TeV!

From the UTfit collaboration (M.Bona et al.) hep-ph:0707.0636

To protect from FCNC: shining of flavor in RS


(Rattazzi, Zaffaroni 2000)

 $U(3)^3$ bulk flavor sym.

$$Y_u$$
: $(3,\overline{3},\underline{1})$
 Y_d : $(3,1,\overline{3})$

Bulk fields: coupled to UV sources. Only Y_{u,d} are close to marginal. Others irrel.

Does not on its own explain hierarchy

Explain hierarchy and protect From FCNC via shining

Use Recent suggestion of Fitzpatrick, Perez, Randall:

Feed Y_u,Y_d spurions to feed into bulk masses "5D MFV model"

- •How can you get a full model? (What is interpretation?)
- •FCNC's?

- New: higher dim. bulk op's break bulk symmetry
- Small breaking exponentiates: gives flavor hierarchy

$$(\alpha_{Q} + \beta_{u}^{L} Y_{u}^{\dagger} Y_{u} + \beta_{d}^{L} Y_{d}^{\dagger}) \bar{\Psi}_{Q} \Psi_{Q}$$

$$(\alpha_{u} + \beta_{u}^{R} Y_{u} Y_{u}^{\dagger}) \bar{\Psi}_{u} \Psi_{u}$$

$$(\alpha_{d} + \beta_{d}^{R} Y_{d}^{\dagger} Y_{u}) \bar{\Psi}_{d} \Psi_{d}$$

$$\mathbb{R}$$

•Y_{u,d} now gives **both** IR brane Yukawa and **splitting** of bulk masses

A simple well-motivated model

- •Y_d is actually a brane field (gen. by CFT)
- Only Y_u is in bulk, can go to Y_u diag. basis
- •Up-type wave functions aligned with Y_u, no FCNC in up sector
- •d_R wave functions completely universal, no FCNC in d_R sector either, ONLY in d_I sector, LLLL type op.
- General case close to this form
- Can solve problem exactly

An explicit example

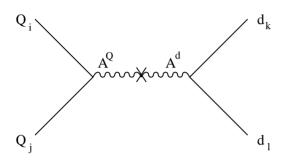
- •Can literally scan over parameter space and see how large the O(1) numbers have to be
- A sample point (with smallest tuning):

$$Y_{t} = 1.98 Y_{b} = 3.30$$

$$Y_{c} = 1.27 Y_{s} = 1.06$$

$$Y_{u} = 0.95 Y_{d} = 0.20$$

$$U_{5} = \begin{bmatrix} -0.42 & -0.67 & 0.59 \\ 0.55 & 0.32 & 0.77 \\ -0.72 & 0.64 & 0.24 \end{bmatrix}$$


$$c_{Q3}$$
=0.38, c_{u3} =0.025
 c_{dR} =0.58, β_L =-0.2, β_R =-0.08

Little tuning still left (w/o expect $m_d/m_s = V_{us} ...$)

•Scale of FCNC from KK gluon exchange LLLL op. ~1.6 10³ TeV, OK for LLLL...

Experimental consequences

•Flavor gauge bosons:

- Masses as KK gluons
- If Y_d brane field lighter
- Will give new FCNC
- For example with scale

$$\Lambda^{-1} = 0.46 \, a \, \epsilon_Q \epsilon_u g^2 \log(\frac{R'}{R}) R'$$

$$\frac{1}{3\Lambda^2}[\bar{Q}V_Q^{\dagger}f_Q\gamma^{\mu}f_QV_QQ][\bar{d}V_d^{\dagger}f_dY_d^{\dagger}\gamma_{\mu}Y_df_dV_dd] + \text{h.c.}$$

Scalars from Y_u

- Yukawas bulk scalars
- Will have own KK modes
- •Coupled to SM fields with Yukawa strength, FCNC?

Summary

•Warped extra dimensions give new playground for models with DSB, composite higgs, flavor

Summary

- •Warped extra dimensions give new playground for models with DSB, composite higgs, flavor
- •Can find new way of implementing GIM into technicolor-type models (masses from kin. mixing)

Summary

- •Warped extra dimensions give new playground for models with DSB, composite higgs, flavor
- •Can find new way of implementing GIM into technicolor-type models (masses from kin. mixing)
- •For theories with somewhat higher scales (composite Higgs) can find solution to flavor puzzle: shine Y_u and dynamically generate Y_{d.} FCNC OK then.