WW Scattering

in Higgsless and Composite Higgs Models

based an warks in collaboration with

G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP06(2007)045
C. Csáki, H. Murayama, L. Pilo and J. Terning
hep-ph/0305237 = PRD69(2004)055006 hep-ph/0308038 = PRL92(2004)10802

Christaphe Grajean
CERN-TH \& CEA-Saclay-SPhT (Christophe.Grojean[at]cern.ch)

Main Question for the LHC

What is the mechanism of EW symmetry breaking?

Main Question for the LHC

What is the mechanism of EW symmetry breaking? what we usually mean by that question is really what is canceling these infamous diagrams?

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m^{2}} \propto \Lambda^{2} \quad \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{k^{2}}{\left(k^{2}-m^{2}\right)^{2}} \propto \Lambda^{2}
$$

supersymmetry, gauge-Higgs, Little Higgs

Main Question for the LHC

What is the mechanism of EW symmetry breaking? what we usually mean by that question is really what is canceling these infamous diagrams?

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m^{2}} \propto \Lambda^{2} \quad \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{k^{2}}{\left(k^{2}-m^{2}\right)^{2}} \propto \Lambda^{2}
$$

supersymmetry, gauge-Higgs, Little Higgs
But this is assuming that we already know the answer to

Main Question for the LHC
What is unitarizing the WW scattering amplitudes?
WL \& ZL part of EWSB sector ∂ W scattering is a probe of Higgs sector interactions

$$
\left.\mathcal{A}=g^{2}\left(\frac{E}{M_{W}}\right)^{2} \quad \sqrt{|\vec{k}|} \cdot \frac{E}{M} \cdot \frac{\vec{b}}{|\vec{k}|}\right)_{w_{L}^{+}}^{w_{L}^{-}} \sqrt{2}_{w_{L}^{+}}
$$

$W_{L} \& Z_{L}$ part of EWSB sector (we have already discovered 75% of the Higgs doublet!) \Rightarrow WW scattering is a probe of Higgs sector interactions

Weakly coupled models
Strongly coupled models

Back to "Technicolor" from Xdims

"AdS/CFT" correspondence for model-builder

Warped gravity with fermions and gauge field in the bulk and Higgs on the brane

$$
A_{5} \rightarrow A_{5}+\partial_{5} \epsilon
$$

with slowly-running couplings in 4D
Strongly coupled theory

$$
h \rightarrow h+a
$$

pseudo-Goldstone of a strong force

Advantages

- weakly coupled description ∂ calculable models
- new approach to fermion embedding and flavor problem

Hiygsless Marels

Warped Higgsless Model

UV brane
IR brane
$z=\operatorname{Ruv} \sim 1 / M_{P 1} \quad \operatorname{SU}(2) L \times S U(2)_{R} \quad z=R_{I R} \sim 1 / T e V$

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

$\operatorname{SU}(2) L \times U(1) y$
$U(1)_{B-L} \times S U(2)_{D}$

$$
\Omega=\frac{R_{I R}}{R_{U V}} \approx 10^{16} \mathrm{GeV}
$$

Warped Higgsless Model

UV brane IR brane
$z=R_{U V} \sim 1 / M_{\text {PI }} \quad \operatorname{SU}(2) \operatorname{L} \times S U(2)_{R} \quad z=R_{\text {IR }} \sim 1 / \operatorname{TeV}$

$$
U(1)_{B-L}
$$

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

$S U(2) L x U(1) y$
$U(1)_{B-L} \times S U(2)_{D}$
$\Omega=\frac{R_{I R}}{R_{U V}} \approx 10^{16} \mathrm{GeV}$
$A_{\mu}^{L a}-A_{\mu}^{R a}=0$
$\partial_{5}\left(A_{\mu}^{L a}+A_{\mu}^{R a}\right)=0$

Warped Higgsless Model

BCs kill all A_{5} massless modes: no 4D scalar mode in the spectrum

Warped Higgsless Model

$$
\begin{aligned}
& \text { IR brane } \\
& z=R_{u v} \sim 1 / M_{\text {PI }} \quad \operatorname{SU}(2)_{L} \times S U(2)_{R} z=R_{\text {IR }} \sim 1 / \operatorname{TeV} \\
& d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right) \\
& S U(2) L x U(1) y \\
& U(1)_{B-L} \times S U(2)_{D} \\
& \Omega=\frac{R_{I R}}{R_{U V}} \approx 10^{16} \mathrm{GeV} \\
& A_{\mu}^{L a}-A_{\mu}^{R a}=0 \\
& \partial_{5}\left(A_{\mu}^{L a}+A_{\mu}^{R a}\right)=0
\end{aligned}
$$

BCs kill all A_{5} massless modes: no 4D scalar mode in the spectrum

Warped Higgsless Model

U(1)em
BCs kill all A_{5} massless modes: no 4D scalar mode in the spectrum
"light" mode:

Warped Higgsless Model

U(1) em
BCs kill all A_{5} massless modes: no 4D scalar mode in the spectrum
"light" mode:

Warped Higgsless Model

UV brane

IR brane

$z=\operatorname{Ruv} \sim 1 / M_{\text {Pl }} \quad \operatorname{SU}(2)_{L} \times S U(2)_{R} \quad z=R_{\text {RR }} \sim 1 / T e V$

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

$\operatorname{SU}(2) \mathrm{L} \times \mathrm{U}(1) \mathrm{y}$
$U(1)_{B-L}$
$U(1)_{B-L} \times S U(2)_{D}$

$$
\Omega=\frac{R_{I R}}{R_{U V}} \approx 10^{16} \mathrm{GeV}
$$

$$
\begin{gathered}
A_{\mu}^{L a}-A_{\mu}^{R a}=0 \\
\partial_{5}\left(A_{\mu}^{L a}+A_{\mu}^{R a}\right)=0
\end{gathered}
$$

BCs kill all A_{5} massless modes: no 4D scalar mode in the spectrum
"light" mode:
log suppression
laK tower.

Unitarization of (Elastic) Scattering Amplitude

Same KK mode 'in' and 'out' $\epsilon_{\perp}^{\mu}=\left(\frac{|\vec{p}|}{M}, \frac{E \vec{p}}{M|\vec{p}|}\right)$

Unitarization of (Elastic) Scattering Amplitude

Same KK mode 'in' and 'out' $\epsilon_{\perp}^{\mu}=\left(\frac{|\vec{p}|}{M}, \frac{E \vec{p}}{M|\vec{p}|}\right)$

u channel exchange

Unitarization of (Elastic) Scattering Amplitude

Same KK mode 'in' and 'out' $\quad \epsilon_{\perp}^{\mu}=\left(\frac{|\vec{p}|}{M}, \frac{E \vec{p}}{M|\vec{p}|}\right)$

contact interaction
s channel exchange

u channel exchange

$$
\mathcal{A}^{(4)}=i\left(g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2}\right)\left(f^{a b e} f^{c d e}\left(3+6 c_{\theta}-c_{\theta}^{2}\right)+2\left(3-c_{\theta}^{2}\right) f^{a c e} f^{b d e}\right)
$$

Unitarization of (Elastic) Scattering Amplitude

Same KK mode 'in' and 'out' $\quad \epsilon_{\perp}^{\mu}=\left(\frac{|\vec{p}|}{M}, \frac{E \vec{p}}{M|\vec{p}|}\right)$

contact interaction

u channel exchange
$\mathcal{A}^{(4)}=i\left(g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2}\right)\left(f^{a b e} f^{c d e}\left(3+6 c_{\theta}-c_{\theta}^{2}\right)+2\left(3-c_{\theta}^{2}\right) f^{a c e} f^{b d e}\right)$

$$
\mathcal{A}^{(2)}=i\left(4 g_{n n n n}^{2}-3 \sum_{k} g_{n n k}^{2} \frac{M_{k}^{2}}{M_{n}^{2}}\right)\left(f^{a c e} f^{b d e}-s_{\theta / 2}^{2} f^{a b e} f^{c d e}\right)
$$

KK Sum Rules

Csaki, Grojean, Murayama, Pilo, Terning '03

$$
\mathcal{A}^{(4)} \propto g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2} \quad \quad \mathcal{A}^{(2)} \propto 4 g_{n n n n}^{2}-3 \sum_{k} g_{n n k}^{2} \frac{M_{k}^{2}}{M_{n}^{2}}
$$

In a KK theory, the effective couplings are given by overlap integrals of the wavefunctions

Completness of KK modes

KK Sum Rules

Csaki, Grojean, Murayama, Pilo, Terning '03

$$
\mathcal{A}^{(4)} \propto g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2} \quad \quad \mathcal{A}^{(2)} \propto 4 g_{n n n n}^{2}-3 \sum_{k} g_{n n k}^{2} \frac{M_{k}^{2}}{M_{n}^{2}}
$$

In a KK theory, the effective couplings are given by overlap integrals of the wavefunctions

- E ${ }^{4}$ Sum Rule

KK Sum Rules

$$
\mathcal{A}^{(4)} \propto g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2}
$$

$$
\mathcal{A}^{(2)} \propto 4 g_{n n n n}^{2}-3 \sum_{k} g_{n n k}^{2} \frac{M_{k}^{2}}{M_{n}^{2}}
$$

In a KK theory, the effective couplings are given by overlap integrals of the wavefunctions

- E ${ }^{4}$ Sum Rule

$$
g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2}=g_{5 D}^{2} \int_{R_{U V}}^{R_{I R}} d z \frac{R}{z} f_{n}^{4}(z)-g_{5 D}^{2} \int_{R_{U V}}^{R_{I R}} d z \frac{R}{z} \int_{R_{U V}}^{R_{I R}} d z^{\prime} f_{n}^{2}(z) f_{n}^{2}\left(z^{\prime}\right) \sum_{k} \frac{R}{z^{\prime}} f_{k}(z) f_{k}\left(z^{\prime}\right)=0
$$

$$
\begin{aligned}
& \sum_{k} \frac{R}{z^{\prime}} f_{k}(z) f_{k}\left(z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \\
& \text { Completness of KK modes } \\
& \text { A.sen Junary } 15^{\prime \prime} \text { 2008 }
\end{aligned}
$$

KK Sum Rules

$\mathcal{A}^{(4)} \propto g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2}$
$\mathcal{A}^{(2)} \propto 4 g_{n n n n}^{2}-3 \sum_{k} g_{n n k}^{2} \frac{M_{k}^{2}}{M_{n}^{2}}$
In a KK theory, the effective couplings are given by overlap integrals of the wavefunctions

- E Sum Rule

$$
g_{n n n n}^{2}-\sum_{k} g_{n n k}^{2}=g_{5 D}^{2} \int_{R_{U V}}^{R_{I R}} d z \frac{R}{z} f_{n}^{4}(z)-g_{5 D}^{2} \int_{R_{U V}}^{R_{I R}} d z \frac{R}{z} \int_{R_{U V}}^{R_{I R}} d z^{\prime} f_{n}^{2}(z) f_{n}^{2}\left(z^{\prime}\right) \sum_{k} \frac{R}{z^{\prime}} f_{k}(z) f_{k}\left(z^{\prime}\right)=0
$$

$$
\mathcal{A}^{(4)}=0
$$

$$
\begin{aligned}
& \sum_{k} \frac{R}{\bar{z}^{\prime}} f_{k}(z) f_{k}\left(z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \\
& \text { Completness of KK modes }
\end{aligned}
$$

Collider Signatures

unitarity restored by vector resonances whose masses and
couplings are constrained by the unitarity sum rules
WZ elastic cross section

$$
g_{W W^{\prime} Z} \leq \frac{g_{W W Z} M_{Z}^{2}}{\sqrt{3} M_{W^{\prime}} M_{W}} \quad \Gamma\left(W^{\prime} \rightarrow W Z\right) \sim \frac{\alpha M_{W^{\prime}}^{3}}{144 s_{w}^{2} M_{W}^{2}}
$$

a narrow and light resonance

Collider Signatures

unitarity restored by vector resonances whose masses and
couplings are constrained by the unitarity sum rules
WZ elastic cross section

VBF (LO) dominates over DY since couplings of q to W^{\prime} are reduced

$$
g_{W W^{\prime} Z} \leq \frac{g_{W W Z} M_{Z}^{2}}{\sqrt{3} M_{W^{\prime}} M_{W}} \quad \Gamma\left(W^{\prime} \rightarrow W Z\right) \sim \frac{\alpha M_{W^{\prime}}^{3}}{144 s_{w}^{2} M_{W}^{2}}
$$

a narrow and light resonance

W' production

discovery reach @ LHC (10 events)

$$
550 \mathrm{GeV} \rightarrow 10 \mathrm{fb}^{-1}
$$

$$
1 \mathrm{TeV} \rightarrow 60 \mathrm{fb}^{-1}
$$

should be seen within one/two year
Number of events at the LHC, $300 \mathrm{fb}^{-1}$

Composite Higys Models

Minimal Composite Higgs Model

UV brane

IR brane

$50(5) \times U(1)_{B=L}$

$$
d s^{2}=\left(\frac{R}{z}\right)^{2}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

$S U(2) L x U(1) y$
$50(4) \times U(1)_{B-L}$
$\Omega=\frac{R_{I R}}{R_{U V}} \approx 10^{16} \mathrm{GeV}$
$z=\operatorname{Ruv} \sim 1 / M_{\text {PI }}$
$z=\operatorname{RIR}^{\sim} 1 / \mathrm{TeV}$
warped dual to composite Higgs model

SO(4)

SO(5)/SO(4)

Unitarity with Composite Higgs

Technicolor: W_{L} and Z_{L} are part of the strong sector Higgs = composite object (part of the strong sector too) its couplings deviate from a point-like scalar

$$
\text { partial unitarization } \quad \text { heavy rho }
$$

unitarization halfway between weak and strong unitarizations!

- \neq susy: no naturalness pb \rightleftharpoons no need for new particles to cancel Λ^{2} divergences
- \# technicolor: heavier rho \rightleftharpoons smaller oblique corrections; one tunable parameter: v/f. $\quad \hat{S}_{\mathrm{uv}} \sim \frac{g^{2} N}{96 \pi^{2} v^{2}}$

How to obtain a light composite Higgs?

Higgs=Pseudo-Goldstone boson of the strong sector
$m_{\text {Higgs }}=0$ when $g_{s M}=0$

UV completion

$4 \pi f-10 \mathrm{TeV}$

$m_{\rho}=g_{\rho} f$ usual resonances of the strong sector $f=\pi$
$v-246 \mathrm{GeV}$ Higgs = light resonance of the strong sector
strong sector broadly characterized by 2 parameters

$$
m_{\rho}=\text { mass of the resonances }
$$

$g_{\rho}=$ coupling of the strong sector or decay cst of strong sector $f=\frac{m_{\rho}}{g_{\rho}}$

How to obtain a light composite Higgs?

Higgs=Pseudo-Goldstone boson of the strong sector
$m_{\text {Higgs }}=0$ when $g_{s M}=0$

UV completion

$4 \pi f-10 \mathrm{TeV}$

$m_{\rho}=g_{\rho} f$ usual resonances of the strong sector $f=$
$v-246 \mathrm{GeV}$ Higgs = light resonance of the strong sector
strong sector broadly characterized by 2 parameters

$$
m_{\rho}=\text { mass of the resonances }
$$

$g_{\rho}=$ coupling of the strong sector or decay cst of strong sector $f=\frac{m_{\rho}}{g_{\rho}}$

SO(5)/SO(4) model

SM Higgs: a SO(4) global symmetry.
Higgs=Goldstone \Rightarrow need to extend the symmetry, e.g. SO(5)

$$
\begin{aligned}
& \phi=5 \text { of } S O(5) \text { with the constraint }|\phi|^{2}=f^{2} \\
& \text { weakly gauge } S U(2)\llcorner X U(1) y \text { of } S O(4) \subset S O(5) \\
& \qquad \phi=\left(\vec{\phi}, \phi_{5}\right) \quad \vec{\phi}^{2}+\phi_{5}^{2}=f^{2}
\end{aligned}
$$

the dynamics will determine the alignement of the two SO(4)

SO(5)/SO(4) model

SM Higgs: a SO(4) global symmetry.
Higgs=Goldstone \Rightarrow need to extend the symmetry, e.g. SO(5)
$\phi=5$ of SO(5) with the constraint $|\phi|^{2}=f^{2}$
weakly gauge $S U(2)\llcorner x U(1) y$ of $S O(4) \subset S O(5)$

$$
\phi=\left(\vec{\phi}, \phi_{5}\right) \quad \vec{\phi}^{2}+\phi_{5}^{2}=f^{2}
$$

the dynamics will determine the alignement of the two SO(4)
A SO(5) breaking potential is generated,
e.g., by interaction with gauge bosons or quarks and leptons

$$
V=\begin{array}{cc}
f^{4} \delta\left(\phi^{2}-f^{2}\right) & A f^{2} \vec{\phi}^{2}+B f^{3} \phi_{5} \\
& \begin{array}{c}
\text { Most general } \\
\text { sotential inv. }
\end{array} \\
\text { soft breaking potential dim } \leq 2
\end{array}
$$

SO(5)/SO(4) model

SM Higgs: a SO(4) global symmetry.
Higgs=Goldstone \Rightarrow need to extend the symmetry, e.g. SO(5)
$\phi=5$ of $S O(5)$ with the constraint $|\phi|^{2}=f^{2}$
weakly gauge $S U(2)\llcorner x U(1) y$ of $S O(4) \subset S O(5)$

$$
\phi=\left(\vec{\phi}, \phi_{5}\right) \quad \vec{\phi}^{2}+\phi_{5}^{2}=f^{2}
$$

the dynamics will determine the alignement of the two SO(4)
A SO(5) breaking potential is generated,
e.g., by interaction with gauge bosons or quarks and leptons

$$
V=f^{4} \delta\left(\phi^{2}-f^{2}\right) \quad A f^{2} \vec{\phi}^{2}+B f^{3} \phi_{5}
$$

$$
v^{2}=\left\langle\vec{\phi}^{2}\right\rangle=f^{2}\left(1-\frac{B}{2 A}\right)
$$

v/f determines by the dynamics

Testing the composite nature of the Higgs?

if LHC sees a Higgs and nothing else*:

- evidence for string landscape???
- it will be more important then ever to figure out whether the Higgs is composite!
- Model-dependent: production of resonances at m_{ρ}
- Model-independent: study of Higgs properties \& W scattering
- Higgs anomalous coupling
- strong WW scattering
- strong HH production
- gauge bosons self-couplings

[^0]
Testing the composite nature of the Higgs?

if LHC sees a Hogs and nothing else*:

- evidence for string landscape???
- it will be more important then ever to figure out whether the Higgs is composite!
- Model-dependent: production of resonances at m_{ρ}
- Model-independent: study of Higgs properties \& W scattering
- Higgs anomalous coupling
- strong WW scattering
- strong HH production
- gauge bosons self-couplings

[^1]
What distinguishes a composite Higgs?

$$
\begin{gathered}
\mathcal{L} \supset \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(|H|^{2}\right) \partial_{\mu}\left(|H|^{2}\right) \quad c_{H} \sim \mathcal{O}(1) \\
U=e^{i}\left(H^{\dagger} / f\right. \\
f^{2} \operatorname{tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)=\left|\partial_{\mu} H\right|^{2}+\frac{\sharp}{f^{2}}\left(\partial|H|^{2}\right)^{2}+\frac{\sharp}{f^{2}}|H|^{2}|\partial H|^{2}+\frac{\sharp}{f^{2}}\left|H^{\dagger} \partial H\right|^{2}
\end{gathered}
$$

What distinguishes a composite Higgs?

$$
\begin{aligned}
\mathcal{L} & \supset \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(|H|^{2}\right) \partial_{\mu}\left(|H|^{2}\right) \quad c_{H} \sim \mathcal{O}(1) \\
H= & \binom{0}{\frac{v+h}{\sqrt{2}}} \square \mathcal{L}=\frac{1}{2}\left(1+c_{H} \frac{v^{2}}{f^{2}}\right)\left(\partial^{\mu} h\right)^{2}+\ldots
\end{aligned}
$$

Modified
Higgs propagator

Higgs couplings
rescaled by

$$
\frac{1}{\sqrt{1+c_{H} \frac{v^{2}}{f^{2}}}} \sim 1-c_{H} \frac{v^{2}}{2 f^{2}}
$$

What distinguishes a composite Higgs?

Giudice, Grojean, Pomarol, Rattazzi 'Or

$$
\begin{aligned}
\mathcal{L} \supset \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(|H|^{2}\right) \partial_{\mu}\left(|H|^{2}\right) \quad c_{H} & \sim \mathcal{O}(1) \\
H= & \binom{0}{\frac{v+h}{\sqrt{2}}} \longmapsto \mathcal{L}=\frac{1}{2}\left(1+c_{H} \frac{v^{2}}{f^{2}}\right)\left(\partial^{\mu} h\right)^{2}+\ldots
\end{aligned}
$$

Modified
Higgs propagator

Higgs couplings rescaled by
$\frac{1}{\sqrt{1+c_{H} \frac{v^{2}}{f^{2}}}} \sim 1-c_{H} \frac{v^{2}}{2 f^{2}}$
no exact cancellation of the growing amplitudes

What distinguishes a composite Higgs?

Giudice, Grojean, Pomarol, Rattazzi 'Or

$$
\begin{aligned}
\mathcal{L} \supset \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(|H|^{2}\right) \partial_{\mu}\left(|H|^{2}\right) \quad c_{H} \sim \mathcal{O}(1) \\
H=\binom{0}{\frac{v+h}{\sqrt{2}}} \longmapsto \mathcal{L}=\frac{1}{2}\left(1+c_{H} \frac{v^{2}}{f^{2}}\right)\left(\partial^{\mu} h\right)^{2}+\ldots
\end{aligned}
$$

Modified Higgs propagator

Higgs couplings rescaled by
$\frac{1}{\sqrt{1+c_{H} \frac{v^{2}}{f^{2}}}} \sim 1-c_{H} \frac{v^{2}}{2 f^{2}}$
no exact cancellation of the growing amplitudes
unitarity restored by heavy resonances

What distinguishes a composite Higgs?

Giudice, Grojean, Pomarol, Rattazzi 'Or

$$
\begin{aligned}
\mathcal{L} & \frac{c_{H}}{2 f^{2}} \partial^{\mu}\left(|H|^{2}\right) \partial_{\mu}\left(|H|^{2}\right) \quad c_{H} \sim \mathcal{O}(1) \\
H= & \binom{0}{\frac{v+h}{\sqrt{2}}} \rightleftharpoons \mathcal{L}=\frac{1}{2}\left(1+c_{H} \frac{v^{2}}{f^{2}}\right)\left(\partial^{\mu} h\right)^{2}+\ldots
\end{aligned}
$$

Modified
Higgs propagator

Higgs couplings rescaled by
$\frac{1}{\sqrt{1+c_{H} \frac{v^{2}}{f^{2}}}} \sim 1-c_{H} \frac{v^{2}}{2 f^{2}}$
no exact cancellation of the growing amplitudes
unitarity restored by heavy resonances
Strong W scattering below m_{ρ}

SILH Effective Lagrangian

(strongly-interacting light Higgs)

- extra Higgs leg: H / f - extra derivative: ∂ / m_{ρ}

Genuine strong operators (sensitive to the scale f)

Form factor operators (sensitive to the scale m_{o})

SILH Effective Lagrangian

(strongly-interacting light Higgs)

- extra Higgs leg: H / f - extra derivative: ∂ / m_{ρ}

Genuine strong operators (sensitive to the scale f)

$$
\underbrace{\frac{c_{H}}{2 f^{2}}\left(\partial_{\mu}\left(|H|^{2}\right)\right)^{2} \cdot \frac{c_{T}}{2 f_{\text {custrodial breaking }}^{2}\left(H^{\dagger} \overleftrightarrow{\overleftrightarrow{\mu}^{1}} H\right)^{2}} \cdot \frac{c_{y} y_{f}}{f^{2}}|H|^{2} \bar{f}_{L} H f_{R}+\text { h.c. } \frac{c_{6} \lambda}{f^{2}}|H|^{6}}
$$

Form factor operators (sensitive to the scale m_{p})

SILH Effective Lagrangian

(strongly-interacting light Higgs)

Giudice, Grojean, Pomarol, Rattazzi ‘O「

- extra Higgs leg: H / f - extra derivative: ∂ / m_{ρ}

Genuine strong operators (sensitive to the scale f)

$$
\frac{c_{H}}{2 f^{2}}\left(\partial_{\mu}\left(|H|^{2}\right)\right)^{2} \sqrt{\left.\frac{c_{T}}{2 f_{\text {custrodial breaking }}^{2}(H)^{\dagger} \overleftrightarrow{D^{\mu}}} H\right)^{2}} \frac{c_{y} y_{f}}{f^{2}}|H|^{2} \bar{f}_{L} H f_{R}+\text { h.c. } \frac{c_{6} \lambda}{f^{2}}|H|^{6}
$$

Form factor operators (sensitive to the scale m_{0})

$$
\frac{\imath c_{W}}{2 m_{\rho}^{2}}\left(H^{\dagger} \sigma^{i} \stackrel{D^{\mu}}{ } H\right)\left(D^{\nu} W_{\mu \nu}\right)^{i}
$$

$$
\frac{\imath c_{B}}{2 m_{\rho}^{2}}\left(H^{\dagger} \vec{D}^{\mu} H\right)\left(\partial^{\nu} B_{\mu \nu}\right)
$$

$$
\frac{i c_{H W}}{m_{\rho}^{2}} \frac{g_{\rho}^{2}}{16 \pi^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}
$$

$$
\text { minimal coupling: } h \rightarrow \gamma Z
$$

$$
\frac{c_{\gamma}}{m^{2}} \frac{g_{\rho}^{2}}{16 \pi^{2}} \frac{g^{2}}{g_{\rho}^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}
$$

$$
\frac{i c_{H B}}{m_{\rho}^{2}} \frac{g_{\rho}^{2}}{16 \pi^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}
$$ loop-suppressed strong dynamics

$$
\frac{c_{g}}{m_{\rho}^{2}} \frac{g_{\rho}^{2}}{16 \pi^{2}} \frac{y_{t}^{2}}{g_{\rho}^{2}} H^{\dagger} H G_{\mu \nu}^{a} G^{a \mu \nu}
$$

Coset Structure

$$
\left.U=e^{i\left(H^{\dagger} / f\right.} \begin{array}{r}
H / f
\end{array}\right)_{U_{0}}
$$

$$
\begin{array}{r}
f^{2} \operatorname{tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)=\left|\partial_{\mu} H\right|^{2}+\frac{\sharp}{f^{2}}\left(\partial|H|^{2}\right)^{2}+\frac{\sharp}{f^{2}}|H|^{2}|\partial H|^{2}+\frac{\sharp}{f^{2}}\left|H^{\dagger} \partial H\right|^{2} \\
\text { can be removed by field redefinition } \\
H \rightarrow H+\sharp|H|^{2} H / f^{2}
\end{array}
$$

C_{H} and $\mathrm{C}_{\text {T }}$ are fully fixed by the σ-model structure (up to the overall normalization of f) (independent of the physics at the scale m_{P})
$S O(5) / S O(4): C_{H}=1 / 2, c_{T}=0$

$$
\lambda|H|^{4} \rightarrow \frac{\sharp}{f^{2}} \lambda|H|^{6} \quad y \bar{f}_{L} H f_{R} \rightarrow \frac{\sharp}{f^{2}} y|H|^{2} \bar{f}_{L} H f_{R}
$$

$S U(3) / S U(2) \times U(1): C_{H}=C_{T}=1 / 36$
c_{6} and c_{y} receive contributions both from the σ-model structure and from the resonance at m_{ρ}

EWPT constraints

$$
\begin{aligned}
& \hat{T}=c_{T} \frac{v^{2}}{f^{2}} \square\left|c_{T} \frac{v^{2}}{f^{2}}\right|<2 \times 10^{-3} \quad \begin{array}{c}
\text { removed }
\end{array} \quad \text { by custodial symmetry } \\
& \hat{S}=\left(c_{W}+c_{B}\right) \frac{m_{W}^{2}}{m_{\rho}^{2}} \square m_{\rho} \geq\left(c_{W}+c_{B}\right)^{1 / 2} 2.5 \mathrm{TeV}
\end{aligned}
$$

EWPT constraints

$$
\begin{aligned}
& \hat{T}=c_{T} \frac{v^{2}}{f^{2}} \square\left|c_{T} \frac{v^{2}}{f^{2}}\right|<2 \times 10^{-3} \quad \begin{array}{c}
\text { removed } \\
\text { by custodial symmetry }
\end{array} \\
& \hat{S}=\left(c_{W}+c_{B}\right) \frac{m_{W}^{2}}{m_{\rho}^{2}} \square m_{\rho} \geq\left(c_{W}+c_{B}\right)^{1 / 2} 2.5 \mathrm{TeV}
\end{aligned}
$$

There are also some 1-loop IR effects
Barbieri, Bellazzini, Rychkov, Varagnolo 'or

$$
\begin{aligned}
& \hat{S}, \hat{T}=a \log m_{h}+b \\
& \hat{S}, \hat{T}=a\left(\left(1-c_{H} \xi\right) \log m_{h}+c_{H} \xi \log \Lambda\right)+b \\
& \text { effective } \\
& \text { Higgs mass } \\
& m_{h}^{\text {eff }}=m_{h}\left(\frac{\Lambda}{m_{h}}\right)^{c_{H} v^{2} / f^{2}}>m_{h}
\end{aligned}
$$

modified Higgs couplings to matter

LEPII, for $\mathrm{m}_{\mathrm{h}} \sim 115 \mathrm{GeV}: \mathrm{CH}_{\mathrm{H} \nu^{2} / f^{2}<1 / 3 \sim 1 / 2}$

IR effects can be cancelled by heavy fermions (model dependent).

Strong W scattering

Even with a light Higgs, growing amplitudes (at least up to m_{ρ})

$$
\mathcal{A}\left(Z_{L}^{0} Z_{L}^{0} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\mathcal{A}\left(W_{L}^{+} W_{L}^{-} \rightarrow Z_{L}^{0} Z_{L}^{0}\right)=-\mathcal{A}\left(W_{L}^{ \pm} W_{L}^{ \pm} \rightarrow W_{L}^{ \pm} W_{L}^{ \pm}\right)=\frac{c_{H} s}{f^{2}}
$$

$$
\mathcal{A}\left(W^{ \pm} Z_{L}^{0} \rightarrow W^{ \pm} Z_{L}^{0}\right)=\frac{c_{H} t}{f^{2}}, \quad \mathcal{A}\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\frac{c_{H}(s+t)}{f^{2}}
$$

$$
\mathcal{A}\left(Z_{L}^{0} Z_{L}^{0} \rightarrow Z_{L}^{0} Z_{L}^{0}\right)=0
$$

$$
\sigma\left(p p \rightarrow V_{L} V_{L}^{\prime} X\right)_{c_{H}}=\left(c_{H} \frac{v^{2}}{f^{2}}\right)^{2} \sigma\left(p p \rightarrow V_{L} V_{L}^{\prime} X\right)_{H}
$$

leptonic vector decay channels forward jet-tag, back-to-back lepton, central jet-veto with $300 \mathrm{fb}^{-1}$
30 signal-events and 10 background-events

LHC is sensitive to

$$
c_{H} \frac{v^{2}}{f^{2}}
$$

bigger than
$0.5 \sim 0.7$

Strong Higgs production

$O(4)$ symmetry between W_{L}, Z_{L} and the physical Higgs
strong boson scattering \Leftrightarrow strong Higgs production

$$
\mathcal{A}\left(Z_{L}^{0} Z_{L}^{0} \rightarrow h h\right)=\mathcal{A}\left(W_{L}^{+} W_{L}^{-} \rightarrow h h\right)=\frac{c_{H} s}{f^{2}}
$$

signal: © hh $\rightarrow \mathrm{bbbb}$

- $h h \rightarrow 4 W \rightarrow \ell^{\star} \ell^{ \pm} v$ jjets

Sum rule (with cuts $|\Delta \eta|<\delta$ and $s<M^{2}$)
$2 \sigma_{\delta, M}(p p \rightarrow h h X)_{c \mu}=\sigma_{\delta, M}\left(p p \rightarrow W_{L}^{+} W_{L}^{-} X\right)_{c \mu}+\frac{1}{\sigma}\left(9-\tanh ^{2} \frac{\delta}{2}\right) \sigma_{\delta, M}\left(p p \rightarrow Z_{L}^{0} Z_{L}^{0} X\right)_{c \mu}$

Conclusions

The LHC should tell us what is the mechanism of EWSB

Oblique corrections are a test of new physics

WW scattering (and Higgs anomalous couplings) should be able to tell us if the EWSB sector is strongly or weakly coupled.

[^0]: * a likely possibility that precision data seems to point to, at least in strongly coupled models

[^1]: * a likely possibility that precision data seems to point to, at least in strongly coupled models

