

Search for high mass SM Higgs at the Tevatron

Sabine Lammers Columbia University Aspen Winter Conference

✓ Motivation

Outline:

- ✓ Approach
- ✓ CDF Analysis
- ✓ D0 Analysis
- ✓ Combined Limits
- ✓ Future Prospects

Higgs Phenomenology

- Higgs field is a complex scalar field introduced to break the electroweak symmetry and to introduce mass terms in the Standard Model (SM) Lagrangian
- Neutral, spin 0 Higgs Boson must be found to complete SM picture
- Higgs mass is a parameter of the theory

Constraints on Higgs mass

- Precision Fit of electroweak precision data, including top quark and W masses
- best fit Higgs mass = 76 + 33 24 GeV

➡ m_H < 144 GeV at 95% CL</p>

Direct Search Limit: m_H ≥ 114.4 GeV @ 95% CL

Combined direct/indirect limit: m_H < 182

Higgs Production & Decay

Production through gluon fusion, Higgsstrahlung or vector boson fusion

Higgs decays to pairs of fermions or bosons, depending on available phase space to produce real particles.

For maximal signal significance:

- Higgsstrahlung or "associated production" searches at low mass
- gluon fusion searches at high mass

 $H^0 \to WW^* \to l^{\pm} \nu l^{\mp} \nu'$

Event Signature

• 2 high p_T leptons and missing E_T

Backgrounds: Diboson (mainly WW), Drell-Yan, tt, W+jets

Analysis Approach - similar for CDF and D0

- Phase space selection
 - data are binned according to lepton flavor: $e^{\pm}e^{\mp}$, $e^{\pm}\mu^{\mp}$, $\mu^{\pm}\mu^{\mp}$
- Simulate background processes
- Normalize the backgrounds
- Analyze the data with multivariate techniques
- In the absence of signal, extract limits

signa

CDF Analysis

Base Selection

- lepton trigger selection
- 2(4) categories of electron (muons) with opposite charge
- lepton and missing E_T cuts applied to reduce backgrounds
- event-by-event likelihood ratio discriminant constructed as final variable

Event Yields

• Background/Data yields:

			B	ase llĘ	\mathbb{Z}_T Sele	ction			
Category	WW	WZ	ZZ	$t\overline{t}$	DY	$W\gamma$	$W+{ m jets}$	Total	Data
e e	46.6	5.3	8.2	2.9	26.6	27.2	22.8	140 ± 12	144
$e \mu$	110.1	3.2	0.5	7.0	22.5	23.8	24.1	$191 \hspace{.1in} \pm 17$	191
$\mu \mu$	36.0	4.1	6.7	2.7	17.6	0.0	3.1	$70~\pm~6$	58
e trk	37.8	2.6	3.3	2.6	10.3	6.5	10.9	74 ± 6	80
$\mu ext{ trk}$	20.6	1.6	2.3	1.5	5.3	1.1	5.8	38 ± 3	49
Total	251.0	16.9	20.9	16.8	82.2	58.5	66.6	513 ± 41	522

• Signal yields:

				Hig	gs Ma	ass (G	eV)			
Category	110	120	130	140	150	160	170	180	190	200
e e	0.1	0.3	0.6	0.9	1.2	1.4	1.4	1.1	0.8	0.6
$e \mu$	0.2	0.6	1.3	2.0	2.6	3.1	3.0	2.5	1.8	1.4
$\mu \mu$	0.1	0.2	0.5	0.8	1.1	1.3	1.3	1.0	0.7	0.6
$e \operatorname{trk}$	0.0	0.2	0.4	0.7	0.9	1.2	1.2	1.0	0.7	0.6
μ trk	0.0	0.1	0.2	0.4	0.6	0.8	0.7	0.6	0.4	0.3
Total	0.4	1.3	3.0	4.8	6.4	7.8	7.6	6.2	4.4	3.5

Matrix Element in H->WW*

- idea: use LO matrix elements to calculate event probabilities
- for each event and process integrate ME over phase space, accounting for efficiency and resolution of observables

$$P_{m}(x_{obs}) = \frac{1}{\langle \sigma_{m} \rangle} \int \frac{d\sigma_{m}^{th}(y)}{\int dy} \epsilon(y) G(x_{obs}, y) dy$$

ME efficiency resolution

• calculate likelihood ratio for each event:

$$LR(x_{obs}) \equiv \frac{P_H(x_{obs})}{P_H(x_{obs}) + \sum_i k_i P_i(x_{obs})} \qquad \begin{array}{l} \mathsf{H} = \mathsf{Higgs mass hypothesis} \\ \mathsf{k_i} = \mathsf{expected fraction} \\ \mathsf{per background} \end{array}$$

Sabine Lammers

9

High Mass Higgs

 $L dt = 1.9 \text{ fb}^{-1}$

- Define LR discriminants for background processes
- Good agreement between data and expectation indicate accurate background simulation

CDF Run II Preliminary

LR cross-checks

Result

- Data separated into regions of low and high S/B
- Binned maximum likelihood fit of LR discriminant used to determine limit
- $\sigma_H \times BR < 0.8 \text{ pb} @ 95\% \text{ CL for } m_H = 160 \text{ GeV/}c^2$
 - → Observed Limit/ σ_{SM} (NNLL) ~ 2

D0 Analysis

- Preselection:
 - combined single, di-lepton trigger selection ensures efficiency > 95%
 - 2 leptons with opposite charge
 - lepton p_T>10-20 GeV depending on channel, Higgs mass
 - M_{ee} , $M_{e\mu}$ ($M_{\mu\mu}$) > 15 (17) GeV
- Final selection cuts optimized for each Higgs mass separately

After Preselection, M_=160

D0 Run Ila

Preliminary

10⁴

10³

10²

10

1⊧

10⁻¹

tt QCD

WZ

WW

W→µv

Ζ→ττ Z →µµ

Data

H160

ZZ

 $\mu\mu$

Event Yields

Final (stringent) selection:

	$ee(1.1fb^{-1})$	$e\mu(1.1fb^{-1})$	$\mu\mu(1.7fb^{-1})$
lepton ID	$p_{T,1} > 15, p$	$T_{T,2} > 10$	$p_{T,1} > 20, p_{T,2} > 10$
lepton ID	$m_{ll} > 15, is$	solation	$m_{ll} > 17$, isolation
$\not\!$	$\not\!$	> 25 - 35, scale	$\operatorname{ed}(\not\!\!\!E_T) > 7$
$m_{ll} < x$	$\min(m_H/2, 80)$		$m_H/2$
$p_{T,1} + p_{T,2} + \not\!$			$m_H/2 + 20 < x < m_H$
$m_{T,\min}(l, ot\!$	x > 50	-65	x > 30 - 45
$H_T = \sum p_T^{ m jet}$	$H_T <$	70	$H_T < 50 - 60$
$\Delta \phi_{ll}$		$\Delta \phi_{ll} < 1.25$	-1.5

$\mu\mu$ channel:

M_H (GeV)	120	140	160	180	200
$H \rightarrow W^+ W^-$	0.32 ± 0.01	0.87 ± 0.01	1.29 ± 0.01	0.90 ± 0.03	0.43 ± 0.01
$Z/\gamma \rightarrow ll$	9.4 ± 0.6	6.0 ± 0.5	1.3 ± 0.2	1.5 ± 0.2	2.9 ± 0.3
Diboson (WW, WZ)	12.5 ± 0.1	14.9 ± 0.1	9.7 ± 0.1	10.7 ± 0.1	14.7 ± 0.1
tī	0.4 ± 0.1	0.8 ± 0.1	0.6 ± 0.1	0.7 ± 0.1	0.7 ± 0.1
$W+\text{jet}/\gamma$	8.0 ± 1.7	3.5 ± 1.1	1.1 ± 1.1	1.0 ± 1.1	0 ± 1.7
Multi-jet	0.2 ± 0.1	0.1 ± 0.1	$0. \pm 0.$	$0. \pm 0.$	0 ± 0
Background sum	20.8 ± 1.7	25.3 ± 1.2	12.6 ± 2.0	13.8 ± 1.2	18.3 ± 1.7
Data	31	24	10	12	18

• Final result determined from fit to NN output

Systematic Uncertainties

Contribution	WW	WZ	ZZ	tī	DY	$-W\gamma$	W+jets	Н
Trigger	2	2	2	2	3	7	_	3
Lepton ID	2	1	1	2	2	1	_	2
Acceptance	6	10	10	10	6	10	_	10
E_T Modeling	1	1	1	1	20	1	_	1
Conversions	0	0	0	0	0	20	_	0
NNLO Cross Section	10	10	10	15	5	10	_	10
PDF Uncertainty	2	3	3	2	4	2	_	2
Normalization	6	6	6	6	6	6	23	6

Contribution	Diboson	$Z/\gamma^* \rightarrow \ell \ell$	$W + jet/\gamma$	$t\bar{t}$	QCD	Н
Trigger	5	5	5	5	_	5
Lepton ID	$^{+8}_{-5}$	$^{+8}_{-5}$	+8 -5	$^{+8}_{-5}$	_	+8 -5
Momentum resolution	2-11	2-11	2-11	2-11	_	2-11
Jet Energy Scale	10	10	10	10	_	5
Cross Section	4	4	4	4	_	4
PDF Uncertainty	4	4	4	4	_	4
Normalization	6	6	20	6	20	-

- systematic error dominated by uncertainty on background normalization
- additional significant contributions from acceptance, momentum resolution, jet energy scale

Results

- All channels, bins are used to determine combined likelihood function for best sensitivity and limit.
- Observed Limit/ σ_{SM} (NNLL) = 2.4 @ m_H = 160 GeV
- Expected Limit/ σ_{SM} (NNLL) = 2.8 @ m_H = 160 GeV

$m_{ m h}[{ m GeV}]$	120	140	160	180	200
	expected	limit (95%	C.L. limit	/SM (NNLL)	cross section)
Run IIa combination (1.1 fb^{-1})	28.7	8.3	3.5	5.3	11.7
Run IIa + Run IIb combination (1.7 fb^{-1})	22.2	6.7	2.8	4.4	9.7
	observed	limit (95%	C.L. limit,	/SM (NNLL)	cross section)
Run IIa combination (1.1 fb^{-1})	48.9	12.3	3.1	5.5	11.4
Run IIa + Run IIb combination (1.7 fb^{-1})	47.3	12.0	2.4	4.7	11.1

WH->WWW*

Associated Higgs production mode makes use of like-sign isolated lepton (electrons or muons)

- one of W's from Higgs decay has samesign lepton as associated W
- avoids large SM backgrounds (Z/ γ^* ,WW, tt production) present in direct H \rightarrow WW* searches
- background from "charge flips" accounted for by estimating flip probability from data (ratio of like to unlike sign events at high invariant mass (M_{II}>70 GeV)

Event Selection:

- dilepton (ee,eµ,µµ) trigger
 - EM cluster with p_T>15 GeV, |η|<1.1, matched to central track
 - isolated muon with p_T>15 GeV
- third lepton veto
- missing E_T>20 GeV

Limit: 0.9 pb at 95% CL for m_H=160 GeV

Latest Higgs Results from Tevatron

- Nearly at required sensitivity for m_H = 160 GeV! Look for tantalizing results at Moriond '08.
- D0 and CDF sensitivities are largely similar, differences can appear as each experiment updates their analyses

Expected limits:

4.3 x SM expectation at $m_H=115$ GeV 1.9 x SM expectation at $m_H=160$ GeV Observed limit @ m_H=160 GeV - 1.4 x SM expectation

Summary and Future Prospects

- The Tevatron is closing in on the SM at large values of Higgs mass
- CDF and D0 have comparable sensitivities
- Each experiment currently achieves expected limits of ~3 x SM cross section
- Recent improvements in NN discriminants, lepton acceptance has provided experimental sensitivity gain of 1.7 (does not include luminosity gain).
- At high mass, we expect additional gain of 1.4 from:
 - optimizing multivariate techniques (30%)
 - lepton efficiency (10%)
- Further additional improvements could come from adding tau channels

Backup

Tevatron Projections

- Including data taking efficiency, projected full data set will be
 - 5.5 fb-1 by end of 2009
 - 6.8 fb-1 by end of 2010
- Assumption: projected sensitivity for $m_H = 115$ GeV will be factor x2 higher than current for full dataset
 - Improvement from 2005 -> 2007 was factor 1.7
 - Several possibilities for improvement:
 - Better b-tagging with Layer 0
 - dedicated group studying dijet mass resolution
 - many gains to be made in acceptance
 - implementation of multivariate techniques

Sensitivity and Projections – M_H = 115 GeV

- Since 2005, our analysis sensitivity has improved by a factor of 1.7 beyond improvement expected from sqrt(luminosity)
 - Acceptance/kin. phase space/Trigger efficiency
 - Asymmetric tagging for double b-tags
 - b-tagging improvements (NN b-tagging)
 - improved statistical techniques/event NN discriminant
 - \rightarrow for channel with largest effort applied (WH) factor was 2.1
- For 2010, we estimate that we will gain an additional factor of 2.0 beyond improvement expected from sqrt(luminosity)
 - add single-b-tag channel to ZH→vvbb
 - include forward electrons, and 3-jet sample in WH
 - b-tagging improvements
 - Layer 0 (~8% per tag efficiency increase)
 - add semileptonic b-tags (~5% per tag efficiency increase)
 - Di-jet mass resolution (18% to 15% in $\sigma(m)/m$)
 - increased lepton efficiency (10% per lepton)
 - improved/additional multivariate techniques (~20% in sensitivity)

LEP Direct Searches

- LEP direct search result : combination from four experiments found hint of a signal at m_H ~118 GeV, but could be fluctuation
- LEP technique for deriving limits
 - Ratio of Poisson Likelihoods
 - Comparison of signal+background and background only hypotheses to data
 - Probability densities determined using toy MC experiments whose event makeup vary according to statistical and systematic uncertainties

Tevatron Detectors: DØ and CDF

- DØ Liquid Argon and Uranium Scintillator sampling calorimeter
- Silicon Microstrip and Fiber tracking
- Good muon coverage $|\eta| < 2$ $\eta = -\ln(\tan \Theta/2)$
- 2T magnetic field

- CDF Lead Scintillator sampling calorimeter
- Large tracking volume + silicon
- Muon coverage $|\eta| < 1.5$
- 1.5 T magnetic field

Event Yields

Event yields after final (stringent) selection:

	ee	eμ	$\mu\mu$
lepton ID	$p_{T,1} > 15, p_{T,2}$	$> 10, m_{ll}$	> 15, isolation
$\not\!$	$E_T > 20$, si	ignificanc	$e(E_T) > 7$
$m_{ll} < x$	$min(m_H/2, 80)$	$m_H/2$	80
$p_{T,1} + p_{T,2} + \not\!$	$m_H/2 + 20 < x$	$< m_H$	100 < x < 160
$m_{T,\min}(l, ot\!$	$x > 15 + m_l$	_H /4	x > 55
$H_T = \sum p_T^{ m jet}$	$H_T < 100$)	$H_T < 70$
$\Delta \phi_{ll}$	4	$\Delta \phi_{ll} < 2.0$)

M_H (GeV)	120	140	160	180	200
$H \rightarrow W^+W^-$	0.1 ± 0.005	0.41 ± 0.03	0.78 ± 0.02	0.51 ± 0.02	0.25 ± 0.01
$Z/\gamma \rightarrow ll$	0.3 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.3	0.3 ± 0.3
Diboson (WW, WZ)	7.0 ± 0.3	7.1 ± 0.3	5.5 ± 0.3	4.3 ± 0.2	5.3 ± 0.2
tī	1.4 ± 0.1	1.5 ± 0.1	1.4 ± 0.1	1.2 ± 0.1	1.5 ± 0.1
$W+jet/\gamma$	5.1 ± 1.7	4.2 ± 1.5	6.7 ± 2.0	3.8 ± 1.6	5.6 ± 1.9
Multi-jet	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.05	0.2 ± 0.1	0.15 ± 0.1
Background sum	14.1 ± 1.7	12.9 ± 1.5	13.8 ± 2.0	9.8 ± 1.6	12.9 ± 1.9
Data	12	10	15	7	11
M_H (GeV)	120	140	160	180	200
$H \rightarrow W^+W^-$	0.21 ± 0.01	0.8 ± 0.02	1.64 ± 0.03	1.0 ± 0.03	0.7 ± 0.02
$Z/\gamma \rightarrow ll$	0.4 ± 0.2	0.2 ± 0.1	0.2 ± 0.1	0.1 ± 0.1	0.2 ± 0.1
Diboson (WW, WZ)	14.6 ± 0.1	14.2 ± 0.1	13.2 ± 0.1	10.3 ± 0.1	19.3 ± 0.1
ī	1.1 ± 0.1	1.1 ± 0.1	1.25 ± 0.1	1.1 ± 0.1	1.9 ± 0.1
W +jet/ γ	5.5 ± 1.5	4.8 ± 1.4	7.5 ± 1.9	5.5 ± 1.6	9.9 ± 2.2
Multi-jet	1.3 ± 0.2	0.9 ± 0.2	2.1 ± 0.2	0.9 ± 0.2	1.0 ± 0.2
Background sum	23.0 ± 1.6	21.3 ± 1.5	24.2 ± 2.0	17.8 ± 1.6	32.0 ± 2.3
Data	25	20	20	14	28
M_H (GeV)	120	140	160	180	200
$H \rightarrow W^+W^-$	0.32 ± 0.01	0.87 ± 0.01	1.29 ± 0.01	0.90 ± 0.03	0.43 ± 0.01
$Z/\gamma \rightarrow ll$	9.4 ± 0.6	6.0 ± 0.5	1.3 ± 0.2	1.5 ± 0.2	2.9 ± 0.3
Diboson (WW, WZ)	12.5 ± 0.1	14.9 ± 0.1	9.7 ± 0.1	10.7 ± 0.1	14.7 ± 0.1
tī	0.4 ± 0.1	0.8 ± 0.1	0.6 ± 0.1	0.7 ± 0.1	0.7 ± 0.1
W +jet/ γ	8.0 ± 1.7	3.5 ± 1.1	1.1 ± 1.1	1.0 ± 1.1	0 ± 1.7
Multi-jet	0.2 ± 0.1	0.1 ± 0.1	$0. \pm 0.$	$0. \pm 0.$	0 ± 0
Background sum	20.8 ± 1.7	25.3 ± 1.2	12.6 ± 2.0	13.8 ± 1.2	18.3 ± 1.7
Data	31	24	10	12	18

ee channel

emu channel

mumu channel

Deriving Limits

- Limits derived using semi-frequentist CL_s method where test statistic is LLR = -2LogQ = -2Log[P(s+b)/P(b)]
 - P are probability distribution functions for the signal+background and background only hypotheses
 - P are populated via random Poisson trials with mean values given by the expected number of events in each hypothesis.
 - Systematic uncertainties are incorporated by varying the expected number of events in each hypothesis according to the size and correlations of the uncertainties

Results

Limits derived using semi-frequentist CL_s method where test statistic is LLR = -2LogQ = -2Log[P(s+b)/P(b)]

Limit per channel:

M_H , [GeV]	120	140	160	180	200
	expected	limit (95%	C.L. limit	/SM (NNLI	L) cross section)
ee	59.1	16.6	7.65	11.5	26.7
$e\mu$	39.9	10.7	5.0	7.2	14.8
$\mu\mu$	48.2	16.9	8.5	13.6	32.2
Run IIa combination	28.7	8.3	3.5	5.3	11.7
	observed	limit (95%	C.L. limit	/SM (NNLI	 L) cross section)
ee	80.8	19.4	8.0	12.6	21.9
$e\mu$	66.3	14.9	3.7	5.7	15.7
$\mu\mu$	56.3	22.0	11.3	20.0	33.2
Run IIa combination	48.9	12.3	3.1	5.5	11.4

• All channels, bins are used to determine combined LLR for best sensitivity and limit:

$m_{\rm b}$ [GeV]	120	140	160	180	200	10 [±]
	expected	limit (95%	C.L. limit,	/SM (NNL	L) cross section)	
Run IIa combination (1.1 fb ⁻¹)	28.7	8.3	3.5	5.3	11.7	
tun IIa + Run IIb combination (1.7 fb^{-1})	22.2	6.7	2.8	4.4	9.7	Standa
	observed	limit (95%	C.L. limit	/SM (NNL	L) cross section)	o
Run IIa combination (1.1 fb ⁻¹)	48.9	12.3	3.1	5.5	11.4	120
tun IIa + Run IIb combination (1.7 fb^{-1})	47.3	12.0	2.4	4.7	11.1	

Sabine Lammers

L1Cal2b Upgrade

- Upgraded trigger electronics provide better digitization and allows for sophisticated hardware (sliding window) algorithms including clustering at Level 1.
- New features include triggers for jets, taus, isolated electrons, missing E_T, and topological triggers, e.g. acoplanar jets or back-to-back electrons

Improved L1Cal2b algorithms allows us to run at higher instantaneous luminosity with no degradation (enhancement in some cases) in trigger efficiency

Nucl. Instrum. and Methods, A 584/1, 75-97 (2007)