Higgs and Precision Electroweak Measurements

Mu-Chun Chen University of California at Irvine

SM with a Light Higgs

[LEP EWWG, summer '07]

SM with a light Higgs works pretty well!

input: $m_t = 170.9 \pm 1.8 \text{ GeV}$

best fit: $m_h = 76^{+36}_{-24} \text{ GeV}$

one-sided 95% CL: $m_h < 144 \text{ GeV}$

precision measurements + direct search

limit: $m_h < 182 \text{ GeV}$

SM with a Light Higgs

• SM prediction for Mw: input α , M_z, G_F, M_H \rightarrow predict M_W

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} (1 + \Delta r)$$

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{rem}}(M_H)$$

$$\sim \log \frac{M_Z}{m_f} \sim m_t^2 \sim \log (M_H/M_W)$$

$$\sim 6\% \sim 3.3\% \sim 1\%$$

[LEP EWWG, summer '07]

Problems with SM with a Light Higgs

• Gauge hierarchy problem

$$\delta M_H^2 = \frac{G_F}{4\sqrt{2}\pi^2} \Lambda^2 \left(6M_W^2 + 3M_Z^2 + M_H^2 - 12M_t^2\right) = -\left(\frac{\Lambda}{0.7 \text{ TeV}} 200 \text{ GeV}\right)^2$$
 allowing ~10% fine-tuning \rightarrow new physics at ~1 TeV

• model independent analysis on dim-6 operators:

$$L = \mathcal{O}_i/\Lambda^2$$

	Operator, \mathcal{O}_i	$\Lambda_{min} (TeV)$
LEP	$H^{\dagger} au H W^a_{\mu u} B^{\mu u}$	10
LEP-2	$\overline{e}\gamma_{\mu}e\overline{l}\gamma^{\mu}l$	5
Flavor	$H^{\dagger} \overline{d}_R \sigma_{\mu\nu} q_L F^{\mu\nu}$	9

- tension bt EWPT and scale required for New Physics solution to gauge hierarchy problem
- global fit to some 21 flavor and CP conserving operators show certain directions loosely constrained [Han, Skiba, '04]

Problems with SM with a Light Higgs

- Why do we need a Higgs anyway?
 - Unitarity

- Give gauge invariant masses to the fermions and W, Z bosons
- to agree with precision electroweak measurements
- Any new models for EWSB must also do the same

EWPT Constraining New Physics

- new physics contributions
 - → oblique corrections: S, T, U
- SM reference point: S=T=U=0

$$m_t = 170.9 \pm 1.8$$
; $m_H = (114 - 1000)$ GeV

- low m_H:
 - $\Delta S \sim 0.2$ provided $\Delta S \sim \Delta T$
- high m_H:

 $\Delta S \sim 0.1$ provided $\Delta T \sim \Delta S + 0.2$

Making the Higgs Heavier?

- SM Higgs predicted to be light, yet we have not found it!
- There are several ways to evade the lower bound from LEP data:

$$\Delta T > 0$$
, $\Delta S < 0$ [Peskin, Wells, '01]

- Specific models that have been looked at
 - $\Delta T > 0$
 - ★ 2 Higgs doublet model [Chankowski et al, ...]
 - ★ 4th generation model [Dobrescu & Hill; Kribs, Plehn, Spannowsky, Tait; ...]
 - $\Delta S < 0$
 - ★ extra singlet Majorana fermions [Gates & Turning]
 - \star extra SU(2) × SU(2) multiplets [Dugan & Randall]
- models with extended Higgs sector...

Possible New Physics

motivated by gauge hierarchy problem:

- MSSM
- Extra Dimensions
 - gauge-Higgs unification
 - Higgsless
- Little Higgs
- Fat Higgs, Composite Higgs, Twin Higgs...
- Strongly coupled Higgs Sector (Techni-color, top-color, etc...)

motivated by gauge coupling constant unification:

- models with an extended Higgs sector (GUT's, etc...):
 - specifically models with a SU(2)_L triplet Higgs
- fourth generation model

MSSM

Salient features:

solution to gauge hierarchy problem

- gauge coupling constant unification
- DM candidate (LSP)
- doubling of particle spectrum
- New Contributions to W and Z self-energies:

Slight disadvantage:

Higgs mass in MSSM:

$$M_h^2 < M_Z^2 \cos^2 2\beta + \frac{3G_F}{\sqrt{2}\pi^2} M_T^4 \log\left(\frac{\tilde{M}^2}{M_T^2}\right)$$

LEP limit: $m_H > 114$ GeV, stop needs to be heavy

$$\widetilde{m}_{t1}\widetilde{m}_{t2} > (950 \text{ GeV})^2$$

"little hierarchy problem" (not a severe problem!)

MSSM

[Heinemeyer, Hollik, Stockinger, Weber, Weiglein, '06]

- favor MSSM over SM!
- MSSM band above SM band:

generic for MSSM even at subleading orders:

stop and sbottom loops give Mw upward shift

sleptons :
$$M_{\tilde{F},\tilde{F}'} = 100...2000 \text{ GeV}$$

light squarks :
$$M_{\tilde{F},\tilde{F}'_{\mathrm{up/down}}} = 100\dots 2000 \; \mathrm{GeV}$$

$$\tilde{t}/\tilde{b}$$
 doublet : $M_{\tilde{F},\tilde{F}'_{\mathrm{up/down}}} = 100...2000 \text{ GeV}$

$$A_{t,b} = -2000 \dots 2000 \text{ GeV}$$

gauginos :
$$M_{1,2} = 100...2000 \text{ GeV}$$

$$m_{\tilde{g}} = 195 \dots 1500 \text{ GeV}$$

$$\mu = -2000...2000 \text{ GeV}$$

Higgs :
$$M_A = 90 - 1000 \text{ GeV}$$

$$\tan \beta = 1.1 \dots 60$$

light Higgs mass constrained:

 $m_H < 130 \text{ GeV}$

CMSSM

uncertainty in higher order corrections.

[Buchmueller, Cavanaugh, De Roeck, Heinemeyer, Isidori, Paradisi, Ronga, Weber, Weiglein, '07]

- CMSSM: all EWPO included
- minimum @ $m_{\rm h}^{\rm CMSSM} = 110^{+8}_{-10} \; (\text{exp.}) \pm 3 \; (\text{theo.}) \; {\rm GeV}/c^2$
- SM: $m_h = 76^{+36}_{-24} \text{ GeV}$

- alternative to SUSY as a solution to the gauge hierarchy problem
- minimal realization: littlest Higgs model

non-linear σ model based on SU(5)/SO(5)

• Higgs as a pseudo-Goldstone boson:

global: $SU(5) \stackrel{\langle \Sigma \rangle}{\to} SO(5)$ $\Sigma = e^{2i\Pi/f} \langle \Sigma \rangle$ gauged: $[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2 \to [SU(2) \times U(1)]_{SM}$

• Goldstone bosons:

$$24 - 10 = 14 = 4 \oplus 10$$

$$= 1.0 \oplus 3.0 \oplus 2 \pm 1/2 \oplus 3 \pm 1$$

$$long. comp. \qquad SM \qquad triplet$$
of Ξ_H , W_H , A_H doublet Φ

• quadratic contributions to the Higgs mass cancelled at one-loop by new states with same spin-statistics:

$$\begin{array}{ccc} W,Z,B \leftrightarrow W',Z',B' \\ & t \leftrightarrow T \\ & H \leftrightarrow \varphi \end{array}$$

- collective symmetry breaking:
 - opposite signs
 - equality between coupling constants

quadratic contributions to Higgs mass only at two-loop

- naturalness requires $f \sim (1-2)$ TeV
- mixing with W' and Z' breaks custodial symmetry at tree level

- tree level constraints: $f \sim (3-4) \text{ TeV}$
- one-loop contributions important
 - tree level corrects (higher order terms in ChPT) $\sim \frac{v^2}{f^2}$ one-loop radiative corrections $\sim \frac{1}{16\pi^2}$ for $f \sim$ few TeV: $\frac{1}{16\pi^2} \sim \frac{v^2}{f^2} \sim \text{ a few } \%$

heavy particles (heavy top, triplet Higgs) contributions important

[M.-C.C, Dawson, '03]

Little Higgs Models

contributions from heavy scalar fields:

unless both scalar fields have degenerate masses, the scalar contributions grow with $\Delta m_{\rm sl}^2 \sim f^2$

contributions from heavy top: ~ log

- cancellations between tree and one-loop contributions can occur
- low cutoff scale $f \sim 2$ TeV is allowed by Mw

[M-CC, Dawson, '03]

• Mixing of SM gauge bosons with heavy gauge bosons of the littlest Higgs model gives strong constraint on f

- Imposing T-parity: new particles must be pair produced [Cheng, Low, '04]
- tree level custodial symmetry preserved
 - scale can be as low as $f \sim 500 \text{ GeV}$
 - lightest neutral gauge boson A_H can be DM candidate

excluded at 99.9%, 99%, 95% CL

$$F = \frac{3\lambda_t^2 m_{\rm T_+}^2}{4\pi^2 m_h^2} \log \frac{\Lambda^2}{m_{\rm T_+}^2}$$

Heavy Higgs allowed in littlest Higgs model with T-parity!

Lightest T-odd Particle can be DM candidate

[Hubisz, Meade, Noble, Perelstein, '05]

- triplet Higgs present in many models:
 - LR SU(2)_L x SU(2)_R symmetric model, SO(10) GUT...
 - littlest Higgs model
 - SM + triplet Higgs
- what is a triplet Higgs good for?
 - gauge coupling unification without SUSY (no proton decay, though no predictivity either)

$N_{1/2,1}$	$N_{1/2,3}$	$N_{0,2}$	$N_{0,4}$	$N_{1,0}$	$N_{1,2}$	$\alpha_s(m_Z)$	$M_U ext{ (GeV)}$
1	0	0	2	0	0	0.106	4×10^{12}
1	0	4	0	0	1	0.112	7.7×10^{12}
1	0	0	0	0	2	0.120	1.6×10^{13}
2	0	0	0	1	0	0.116	1.7×10^{14}
2	0	2	0	0	2	0.116	4.9×10^{12}
2	1	0	0	0	2	0.112	1.7×10^{12}
3	0	0	0	0	1	0.105	1.2×10^{13}

- what is a triplet Higgs good for:
 - generating neutrino masses

$$f_{ij}L_{i,L}^{T}\Delta_{L}L_{j,L} \to f_{ij}(\Delta_{L}^{0}\nu_{i,L}\nu_{j,L} + \frac{1}{2}\Delta_{L}^{+}[\nu_{i,L}e_{j,L} + e_{i,L}\nu_{j,L}] + \Delta_{LL}^{++}e_{i,L}e_{j,L})$$

- fij: $\Delta^{++} \rightarrow l^+ l^+$ measure neutrino properties at colliders
- leptogenesis: $\Delta^{++} \rightarrow l^+ l^+$

leptogenesis: $N_1 \rightarrow \ell + H^{\dagger}$

Minimal LR model with SCPV: $leptogenesis \leftrightarrow neutrino\ oscillation$

- Higgs spectrum of model with a doublet and a triplet:
 - two neutral Higgses
 - one charged Higgs

$$\begin{pmatrix} H^0 \\ K^0 \end{pmatrix} = \begin{pmatrix} c_{\gamma} & s_{\gamma} \\ -s_{\gamma} & c_{\gamma} \end{pmatrix} \begin{pmatrix} \phi^0 \\ \eta^0 \end{pmatrix} \qquad H = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}} (v + \eta^0 + i\phi^0) \end{pmatrix}$$

$$\begin{pmatrix}
G^{\pm} \\
H^{\pm}
\end{pmatrix} = \begin{pmatrix}
c_{\delta} & s_{\delta} \\
-s_{\delta} & c_{\delta}
\end{pmatrix} \begin{pmatrix}
\phi^{\pm} \\
\eta^{\pm}
\end{pmatrix} \qquad \Phi = \begin{pmatrix}
\eta^{+} \\
v' + \eta^{0} \\
\eta^{-}
\end{pmatrix}$$

SM: three fundamental parameters in gauge-fermion sector

$$(g, g', v) \to (G_{\mu}, M_Z, \alpha)$$
 $\rho = 1 = \frac{M_W^2}{M_Z^2 c_{\theta}^2}$

in the presence of a (relatively light) SU(2)_L triplet Higgs: [Blank, Hollik '98]

$$(g,\ g',\ v,\ v')
ightarrow (G_{\mu},\ M_{Z},\ \alpha,\ s_{ heta}^{2}) \qquad
ho
eq 1$$
 relation bt Mw & Mz

$$o \neq 1$$
 rela

valid renormalization scheme requires 4 input parameters

LEP definition

$$4s_{\theta}^2 - 1 \equiv \frac{\operatorname{Re}(g_v^2)}{\operatorname{Re}(g_A^e)}$$

• fixing M_w using μ-decay

$$\Delta Y = -\frac{SG_{M}}{G_{M}} - \frac{SM_{W}^{2}}{M_{W}^{2}} + \frac{Sd}{\alpha} - \frac{SS_{0}^{2}}{S_{0}^{2}}$$

$$= \frac{1}{M_{W}^{2}} \left(\overline{\parallel}^{WW}(0) - \overline{\parallel}^{WW}(M_{W}^{2}) \right) + \overline{\parallel}^{W}(0)' - \frac{SS_{0}^{2}}{S_{0}^{2}}$$

$$Qog.$$

top-loop contributions:

$$\frac{1}{M_{\omega}^{2}} \prod_{i}^{WW}(0) \rightarrow \frac{\sqrt{2}G_{M}}{16\pi^{2}} (3m_{e}^{2}) \cdot (1 + 2 \ln \frac{Q^{2}}{m_{e}^{2}}) + \cdots \\
\frac{1}{M_{\omega}^{2}} \prod_{i}^{WW}(M_{\omega}^{2}) \rightarrow \frac{\sqrt{2}G_{M}}{16\pi^{2}} (3m_{e}^{2}) \cdot (1 + 2 \ln \frac{Q^{2}}{m_{e}^{2}}) + \cdots \\
\frac{1}{M_{\omega}^{2}} \prod_{i}^{WW}(0) \rightarrow \ln \frac{m_{e}^{2}}{Q^{2}}$$

SM + triplet Higgs:

$$\frac{SS_{\theta}^{2}}{S_{\theta}^{2}} = \frac{C_{\theta}}{S_{\theta}} \frac{\Sigma^{82}(M_{2}^{2})}{M_{2}^{2}} \sim Q_{n} \frac{m_{e}^{2}}{Q^{2}} !$$

• SM + a triplet Higgs

Heavy Higgs allowed by Mw measurement alone

[M-CC, Dawson, Krupovnickas '05]

observables included in the fit:

Observable	Experimental Value			
M_W	$80.410 \pm 0.032 \text{ GeV}$			
Γ_Z	$2.4952 \pm 0.0023 \text{ GeV}$			
R_Z	20.767 ± 0.025			
R_b	0.21629 ± 0.00066			
R_c	0.1721 ± 0.0030			
A_{LR}	0.1465 ± 0.0032			
A_b	0.923 ± 0.020			
A_c	0.670 ± 0.027			
$A_{FB}^{0,l}$	0.01714 ± 0.00095			
$A_{FB}^{0,\overline{b}}$	0.0992 ± 0.0016			
$A_{FB}^{0,c}$	0.0707 ± 0.0035			

Total Z-width: $\Gamma z = \sum \Gamma_f$

excluded Γz : $m_H = (100-1000)$ GeV included Γz : $m_H = (100-200)$ GeV

⇒ global fit important!

[M-CC, Dawson, Krupovnickas '06]

- importance of Γz in triplet model:
 - no corrections to asymmetries up to $\mathcal{O}((\frac{1}{16\pi^2})^2)$
 - observables most sensitive to m_t or m_H are Mw and Γz
 - compared to SM case: all observables sensitive to m_t or m_h
 - $\Gamma z \sim (m_t)^2$: can still place bound on m_t

[M-CC, Dawson, Krupovnickas '06]

4th Generation Model

• simplest extension of the SM: adding a fourth sequential family

$$(Q_4, u_4, d_4, L_4, e_4)$$

- gauge coupling constant unification without SUSY [Hung '98; Frampton, Hung, Sher '99]
- some models of dynamical symmetry breaking would work better with a heavier top quark
- constraints from flavor changing processes
- unitarity of the 4x4 CKM matrix

$$|V_{ud_4}| \lesssim 0.04$$

 $|V_{u_4d}| \lesssim 0.08$ $|V_{tb}| \gtrsim 0.68$
 $|V_{cd_4}| \lesssim 0.17$

- non-observation of $\mu \rightarrow e\gamma$: mixing bt 1st/2nd & 4th generations < 0.02 for Dirac neutrinos
- limits on t'(\rightarrow Wb) ~ 265 GeV (with 1fb⁻¹)
- limits on b' $(\rightarrow Wj, Wt) \sim 300 \text{ GeV}$

SM triviality bound

[Sher '89; Kribs, Plehn, Spannowsky, Tait, '07]

4th Generation Model

parameter set					
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19 0.21	0.20
(c)	330	260	300	0.21	0.22
(d)	400	350	115	0.15 0.19 0.21	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.21	0.25

[Kribs, Plehn, Spannowsky, Tait, '07]

• allowed range for Higgs mass

$$m_h = (115-315) \text{ GeV } @ 68\% \text{ CL}$$

$$m_h = (115-750) \text{ GeV } @ 95\% \text{ CL}$$

4th Generation Model

new contributions from u₄ and d₄ to H-g-g operator

⇒ enhanced production cross-section

[Kribs, Plehn, Spannowsky, Tait, '07]

Conclusion

- precision measurements slight prefer MSSM over SM
 - best fit value for CMSSM: $m_h = 110 \text{ GeV}$
 - cf. SM: $m_h = 76 \text{ GeV}$
- in presence of new custodial violating physics, one has to be careful when extracting EW limits
- global fit important: specific example in SM + (light) triplet

```
excluded \Gamma z: m_H = (100-1000) GeV included \Gamma z: m_H = (100-200) GeV
```

• heavy Higgs possible: specific example in littlest Higgs with T-parity, 4th generation model, ...