# Extra Dimensions at the LHC

Kaustubh Agashe (University of Maryland)

## Outline and Summary

- Warped extra dimensions address Planck-weak and flavor hierarchies: new (KK) particles at a few TeV (precision tests)
- Challenging for LHC: techniques to detect highly boosted top/W/Z (experimentalists'input!)required
- Relax constraints by KK parity:
  no coupling of single (lightest)
  new particle to SM

## PRECISIONTESTS => NEWPARTICLES FEW TEV

#### 2 Broad Ideas for LHC and hierarchy problem (thanks to R. Sundrum)

 $\log E$ 

**SUSY** 

o non-SUSY



 $LHC \sim 1 \text{ TeV}$ 

### SUSY

- R-parity
- Flavor-blind couplings



- no tree-level precision tests, a few 100 GeV allowed
- LSP stable: dark matter
- pair production at colliders: missing energy



### Class of non-SUSY

- o no parity
- flavor-dependent couplings: large (small) for top/Higgs (light fermions)



- few TeV from precision tests (tree)
- single production, no stable particle



#### Non-SUSY @ LHC: 3 strikes...



- Production suppressed: weak coupling to constituents of
- Decays to top/W/Z/Higgs: golden channels (leptons, photons) suppressed
- Strong coupling broad resonances

....but not out!

### Theory for non-SUSY

Technicolor, Composite Higgs (+ partially composite SM fermions)

Little Higgs, Extra Dimensions (AdS/CFT duality)

# Extra dimensions dual to 4D strong dynamics

(Maldacena; Gubser, Klebanov, Polyakov; Witten)

Particle in 5D: SM  $(x_{\mu}, y)$  Fourier expand y (a la 1D box) Lightest mode (SM) + heavier (Kaluza-Klein) with profiles

Tower of bound states of 4D strong dynamics

## Warped Extra Dimensions

Planck-weak and flavor hierarchy

Weakly-coupled "tool" for 4D strong dynamics

## Gravity and Higgs (Randall, Sundrum)



#### SM in bulk

(Davoudiasl, Hewett, Rizzo; Pomarol; Grossman, Neubert; Chang, Hisano, Nakano, Okada, Yamaguchi; Gherghetta, Pomarol)



# Couplings from overlap of profiles

Flavor hierarchy (fermion-Higgs)

Couplings to KK large (small) for top (electron)

# Precision tests: S parameter

Equivalent to shift in coupling:

$$\frac{\delta g_Z}{g_Z} \sim \frac{M_Z^2}{M_{KK}^2}$$
 $\stackrel{<}{\sim} 0.1\%$ 
 $\Rightarrow M_{KK} \stackrel{<}{\sim} \text{a few TeV}$ 



### Custodial symmetries

T parameter (KA, Delgado, May, Sundrum) and Zbb (KA, Contino, Da Rold, Pomarol)

EW fit with 2-3 TeV KK masses (Carena, Ponton, Santiago, Wagner)

#### Flavor constraints

- Non-universality in coupling to gauge KK  $\propto$  4D Yukawa (analog of GIM)
- $\circ$  O(8) TeV from  $\epsilon_K$  for Higgs on TeV brane... (See talk by G. Perez)

...but

- "O(1) room" from size of 5D gauge and Yukawa coupling, profile for Higgs...

  a few TeV scale allowed
- New ideas to parametrically relax constraints: relate profiles to 5D Yukawas... (See talks by G. Perez and C. Csaki)

## LHCSIGNALS FORKK PARTICLES

#### Couplings of gauge KK's

...from profiles ( $\xi \equiv \sqrt{\log(\text{UV}/\text{IR})} \sim \sqrt{\log(M_{Pl}/\text{TeV})} \sim 5$ ) Gherghetta, Pomarol; Davoudiasl, Hewett, Rizzo

$$\frac{g_{\rm RS}^{q\bar{q},l\bar{l}\,A^{(1)}}}{g_{\rm SM}} \simeq \xi^{-1} \approx \frac{1}{5},$$

$$\frac{g_{\rm RS}^{Q^3\bar{Q}^3A^{(1)}}}{g_{\rm SM}}, \frac{g_{\rm RS}^{t_R\bar{t}_RA^{(1)}}}{g_{\rm SM}} \simeq 1 \text{ to } \xi \approx 1 \text{ to } 5,$$

$$\frac{g_{\rm RS}^{HHA^{(1)}}}{g_{\rm SM}} \simeq \xi \approx 5,$$

$$\frac{g_{\rm RS}^{A^{(0)}A^{(0)}A^{(1)}}}{g_{\rm SM}} \simeq 0$$

Model-independent approach: Contino, Kramer, Son, Sundrum; Giudice, Grojean, Pomarol, Rattazzi (See talks by C. Grojean and A. Pomarol)

## KK gluon

(KA, Belyaev, Krupovnickas, Perez, Virzi)

(See also Lillie, Randall, Wang; Lillie, Tait, Shu; Djouadi, Moreau, Singh)

## Production and Decay



# Problem: collimation of tops

lacktriangle opening angle  $\sim m_t/E \sim 0.1$ 

VS.

usual  $\Delta R \gtrsim 0.4$  between lepton and b-jet and 2 jets from W



## Solution: cut on lepton-b invariant mass

Improved lepton and b-jet isolation cut:  $m_{bl} > 40~{
m GeV}$ 



## Polarization asymmetry: definition

Positron in direction of top spin "forward-backward" asymmetry

$$P_{LR} \equiv 2 \times \frac{N_+ - N_-}{N_+ + N_-}$$

RH (LH) top: 
$$P_{LR} = \pm 1$$

LH top

 $t \operatorname{spin}$ 

RH top



t spin





# Polarization asymmetry: SM vs. Warped

 $\bullet$  SM:  $P_{LR} \sim g_Z^4/g_{QCD}^4$  and < 0 (pure QCD gives 0)

VS.

O(1) for warped extra dimension (KK gluon decays to RH or LH top)

## Discovery for 4 TeV with 100 / fb

"Bump" in differential cross-section (100 fb with 1% efficiency for 3 TeV)

correlated with

Deviation in  $P_{LR}$  from SM

Full simulation in progress: Lee, Perez, Virzi (See also Conway, Dolen, Searle, Squires, Vazquez for hadronic top)

### Differential cross-section



## Polarization asymmetry



## KK gluon decays to KK tops



KK tops (1 TeV) not boosted, decay into Wb (well-separated, but 2 jets from W still collimated) (Carena, Medina, Panes, Shah, Wagner)

### KK Z

(KA, Davoudiasl, Gopalakrishna, Han, Huang, Perez, Si, Soni)

(See also Djouadi, Moreau, Singh)

### Production and Decay



Decays to tops swamped by KK gluon

KK 
$$Z \to W^+W^- \to l^+l'^-\nu\bar{\nu'}$$
: clean, but...

- cannot reconstruct WW invariant mass
- neutrinos back-to-back

#### KK $Z \to W^+W^- \to l^+\nu jj$ : can reconstruct, but...

#### W + jet SM background



#### SOLUTION: JET MASS CUT

(SEE ALSO SMITH, SKIBA; HOLDOM)



### Results for KK Z

Reach of 2 (3) TeV for 100/fb (1000/fb) from semileptonic WW

 $lackbox{o}$  Similar from  ${
m KK}~Z 
ightarrow Zh$ 

#### KK W

(KA, Gopalakrishna, Han, Huang, Soni)

(clean) can be reconstructed

Decays to top + bottom:
KK gluon background



#### • • • REDUCIBLE BY JET MASS CUT



## Other Signals

- KK graviton decays to tops, WW, ZZ: 2 to 3 TeV with 100-1000 /fb (Fitzpatrick, Kaplan, Randall, Wang; KA, Davoudiasl, Perez, Soni; Antipin, Atwood, Soni)
- Light KK fermions (Dennis, Karagoz Unel, Servant, Tseng; Contino, Servant)
- $m{\circ}$  Virtual effects:  $t \to cZ$  with BR of  $10^{-5}$  (see G. Perez's talk)

#### "ORIGINAL" RS1: BRANEWORLD

Golden decays: KK graviton  $\rightarrow l^+l^-, \gamma\gamma$ 



#### CF. SM (- HIGGS) IN THE BULK

KK graviton 
$$\rightarrow l^+l^-, \gamma\gamma$$
  
  $\rightarrow t\bar{t}, WW \text{ (boosted)}$ 

+ KK gluon,  $W, Z, \gamma$ 



#### SIGNALS FOR A CLASS OF MODELS, NOT JUST WARPED EXTRA DIMENSION

Top quark and Higgs ( $longitudinal\ W/Z$ ) "special": mechanism of electroweak symmetry breaking couple strongly to new particles

• New particles couple singly to SM: precision tests  $\Rightarrow \sim$  a few TeV

Resonance production: decays to top and H/W/Z (highly boosted!)



### DETECTION OF BOOSTED ( $\gamma \stackrel{>}{\sim} 10$ ) TOP, W, Z, H...

(More) Studies needed...

Detector-level simulation of  $m_{bl}$ , substructure, jet mass...



# KKPARITY IN WARPED EXTRADIMENSION

# KK parity in flat universal extra dimensions (UED), T-parity in Little Higgs



valid only up to 10's TeV

## KK PARITY IN UED (SEE TALK BY K. KONG)

### \*\* Reflection about midpoint



### NO KK PARITY IN SINGLE ADS SLICE



Warp factor not symmetric about midpoint (cf. flat metric)

### JOIN 2 ADS SLICES

(KA, FALKOWSKI, LOW, SERVANT)

(SEE ALSO, PANICO, PONTON, SANTIAGO, SERONE)



\*\* KK parity interchanges 2 slices

# Motivation and Spectrum

- Odd KK's at 1 TeV, cut off Higgs mass
- Even KK's at few TeV pass precision tests
- Lightest KK particle (LKP) stable:
  Dark Matter

## Phenomenology

- Odd KK's pair-produced
- Large Brane Kinetic terms
   KK Z Dark Matter
   (cf. KK photon in UED)





### Conclusions

- a can't wait for LHC to start!
- keep open mind...

well-motivated models with a few TeV broad resonances decaying into highly boosted (collimated) top/W/Z/Higgs!



# Cannot suppress S with non-AdS

Hirn, Sanz: general Higgs profile and warp factor

Pathology: vev^2 < 0 to suppress S (KA, Csaki, Grojean, Reece: see C. Grojean's talk) (See also McGuirk, Shiu, Zurek)

## Gauge-Higgs unification

(see talks by C. Grojean and A. Pomarol)

4D scalar

- Higgs from 5D gauge fields:  $A_M = A_\mu + A_5$
- Higgs localized near TeV brane, potential from loops (calculable): heavy top  $\implies m_H^2 < 0$

# 5D Higgsless models (breaking by boundary condition) (See talks by C. Csaki and C. Grojean)

- Flat profiles for fermions cancellation in S
- < 1 TeV KK's unitarize WW scattering
  </p>