H⁺ Searches in ATLAS

Overview and status report

Alexander Madsen

Uppsala University / LPSC Grenoble

ILCP Meeting 19/06/2012

UPPSALA UNIVERSITET

Introduction

- In the Standard Model, one scalar Higgs field doublet is responsible for electroweak symmetry breaking → giving us one Higgs boson (and vector boson masses).
- The SM can be extended with an additional Higgs field, giving us in total 5 Higgs bosons: h^0 , H^0 , A^0 , H^+ , H^- .
- In particular, the MSSM Higgs sector is such a Two Higgs Doublet Model (2HDM).
- At tree level, it is fully determined by two parameters, e.g. m_{H^+} and tan β (ratio of Higgs field vacuum expectation values).

H⁺ Searches in ATLAS

- Focus here on light charged Higgs bosons, $m_{H^+} < m_{top}$.
- The dominant decay mode is then $H^+ \rightarrow \tau \nu$ in most of the tan β range.
- A light charged Higgs can be produced in top decays.

Alexander Madsen

Charged Higgs searches in ATLAS

${\sf H}^+ o au^+ u_ au$ combination (3 channels)

- Results presented at Moriond 2012, paper submitted to JHEP (arXiv:1204.2760).
- 1%-5% upper limit on $\sigma(t \rightarrow H^+b) \times \mathcal{B}(H^+ \rightarrow \tau^+\nu_{\tau})$ for 90 GeV $< M_{H^+} < 160$ GeV.

 $\leftarrow \mathsf{plots:} \text{ Assuming } \mathcal{B}(H^+ \to \tau \nu) = 100\%.$

Also under preparation with full 2011 data

- $H^+ \rightarrow \tau \nu$ Ratio Method,
- $H^+ \rightarrow c \overline{s}$,
- $H^+ \rightarrow a_1 W^+$.

Not covered...

- Unusual production/decay modes,
- doubly charged Higgs, etc.

H⁺ Searches in ATLAS

es in ATLAS ILCP Meetin

The Moriond 2012 $H^+ \rightarrow \tau \nu$ searches

$$\frac{lepton+jets:}{Cut on \cos\theta_{l}^{*}} = \frac{t\overline{t} \rightarrow b\overline{b}WH^{+} \rightarrow b\overline{b}(q\,\overline{q'})(\tau_{lep})}{m_{top}^{2}-m_{W}^{2}-1 \simeq \frac{4\,p^{b}\cdot p^{l}}{m_{top}^{2}-m_{W}^{2}} - 1,}$$

inverted cut on $m_{T}^{W} = \sqrt{2p_{T}^{l}E_{T}^{miss}(1-\cos\Delta\phi_{l,miss})}$
reconstruct $t \rightarrow Wb$, find max $(m_{t}^{d})^{2} = (p^{l}+p^{miss})^{2}$
while requiring $(p^{miss}+p^{l}+p^{b})^{2}=m_{top}^{2}$.

 τ

^ bH

÷,

ATLAS

- Observed CL s

Expected

 $\pm 1\sigma$

 $+2\sigma$

Data 2011

s = 7 TeV

Ldt = 4.6 fb

$$\frac{\tau + jets:}{\text{Reconstruct the fully hadronic top decay, require}} \frac{t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}(q\bar{q'})(\tau_{had}\nu)}{\text{Reconstruct the fully hadronic top decay, require}} \frac{t\bar{t} \rightarrow b\bar{b}WH^+ \rightarrow b\bar{b}(q\bar{q'})(\tau_{had}\nu)}{\int_{z}^{z}} \frac{t\bar{t} \rightarrow b\bar{b}(q\bar{q'})}{\int_{z}^{z}} \frac{t\bar{t} \rightarrow b\bar{b}(q\bar{q})}{\int_{z}^{z}} \frac{t\bar{t} \rightarrow b\bar{b}(q\bar{q'})}{\int_{z}^{z}} \frac{t\bar{t}$$

Alexander Madsen

H⁺ Searches in ATLAS

ILCP Meeting 19/06/2012

m., [GeV] 4 / 8

Ldt = 4.6 fb

The Ratio Method

- Previous results are mainly limited by systematics
 → need a way to reduce the effect of these uncertainties.
- The ratio method aims to test lepton universality in $t\bar{t}$ events by measuring the ratios $\frac{\mathcal{B}(t\bar{t} \rightarrow b\bar{b} + \mu \tau_{had})}{\mathcal{B}(t\bar{t} \rightarrow b\bar{b} + \mu e)}$ and $\frac{\mathcal{B}(t\bar{t} \rightarrow b\bar{b} + e \tau_{had})}{\mathcal{B}(t\bar{t} \rightarrow b\bar{b} + e\mu)}$.
- Expect relatively more au events with increasing $\mathcal{B}(t o H^+)!$
- Numerators and denumerators equally affected by uncertainties on e.g. luminosity, jet energy scale, b-tagging efficiency... these systematics cancel in the ratio!
- Can gain sensitivity over previous results, especially in the $m_{H^+}pprox m_W$ region.

Alexander Madsen

H⁺ Searches in ATLAS

ILCP Meeting 19/06/2012

5/8

Ratio Method event selection

- Single lepton (electron or muon) trigger and event quality cuts.
- ② One trigger matched lepton with $E_T > 25$ GeV (electron) or $p_T > 25$ GeV (muon).
- At least 2 jets with p_T > 25 GeV and vertex fraction > 0.75, including exactly 2 b-tagged jets.
- Sither exactly one τ jet or an electron (muon triggered events) or a muon (electron triggered events). Veto on any additional electrons or muons.
- $I = E_T^{miss} > 40 \, \text{GeV}.$

For $e\mu$ events, require e trigger when comparing with $e\tau$ events and μ trigger when comparing with $\mu\tau$ events.

Taus are produced with opposite sign charge (OS) compared to the trigger lepton. \rightarrow Assign a negative weight to events in which the tau candidate has the same charge sign (SS) as the trigger lepton.

Data driven estimation of jet ightarrow au fakes

Tau identification in ATLAS

- Anti-Kt jets with 1 or 3 tracks are considered as tau candidates.
- A likelihood function based on the jet characteristics is used to discriminate between tau
 jets and quark- and gluon-initiated jets. → Use a cut-off value to define "tight" taus.

Fake τ model from data

- Obtain a sample of W+jet events in data and determine how often the non-tau jets identified as tau candidates also pass the "tight" criterion - the "fake rate". → Apply the fake rate as a weight to MC events with fake tau candidates.
- Alternatively: Fit the full likelihood distribution.

Problem: Different quark/gluon fraction of jets in W+jet and $t\bar{t}$ events

- Gluons (and b-jets) are equally likely to be produced with either charge. \rightarrow These contributions should cancel out in the OS-SS subtraction!
- · Remaining tau candidates are mainly true taus and light quarks.

Problem: W+jet is still not a perfect model of $t\bar{t}$ events...

- Bin/reweight by $\tau \eta/p_T$, distance to closest jet, size and total energy of that jet...
- Currently under investigation what the best treatment is.

Outlook: Heavy charged Higgs

- Above the top quark mass, H^+ can be produced via gg or gb fusion.
- A new decay mode opens up, ${\rm H}^+ \to t \bar{b}.$
 - Very difficult to distinguish from SM background.
- Both the $\tau\nu$ and $t\bar{b}$ decay channels will almost certainly be analyzed, but timescale still unclear.
- Large integrated luminosity needed for sensitivity to MSSM-like scenarios.

H⁺ Searches in ATLAS