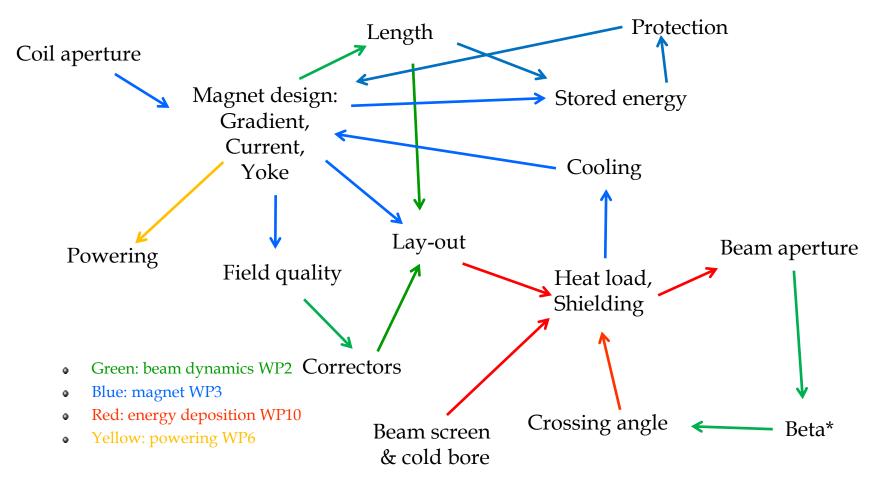


CERN, 2th July 2012 WP3 joint meeting

PROPOSAL OF APERTURE FOR THE INNER TRIPLET

E. Todesco CERN, Geneva Switzerland

With relevant inputs from colleagues F. Cerutti, S. Fartoukh, L. Rossi, G. L. Sabbi



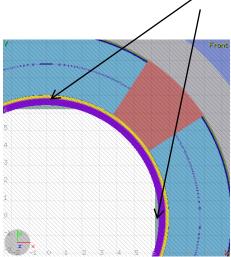
THE FRAMEWORK

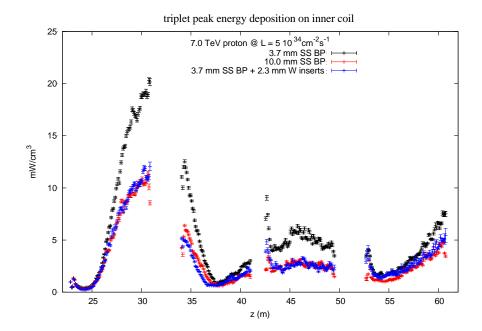
- November 2011:
 - Two technologies: Nb₃Sn is the baseline, Nb-Ti is the back-up
 - Apertures: hardware available at 120 mm: MQXC and HQ
 - Larger apertures considered to have more performance
 - We started considering 140 mm Nb-Ti and Nb₃Sn
 - Main questions:
 - Is there a showstopper to larger apertures ? [this talk]
 - In the Nb₃Sn case we need to build a short model, clone of HQ, with plan, time and cost estimate to check compatibility with project schedule and resources [talk by G. Sabbi]
 - Decision was to be taken in June 2012 (we are two days late...)
 - Nb₃Sn technology will be proved on HQ and LHQ by LARP
- <u>Definition</u>: aperture is coil aperture, not the aperture available for the beam

• Complex iteration between different aspects

<u>E. Todesco</u>

CONTENTS


- Heat loads
- Radiation damage
- Stored energy
- Stress
- Protection


Disclaimer: 150 mm analysis based on scaling to have trends, a real case has to be fully analysed (within July)

HEAT LOADS

- Nominal luminosity of 5×10³⁴ cm⁻² s⁻¹
- To stay below a heat load of 12 mW/cm³ [talks by F. Cerutti, L. Esposito]
 - (this is limit for Nb₃Sn with factor 3 margin)
 - 1.5 mm thickness of He ring
 - 3.7 mm cold bore thickness
 - 2.3 mm thick W inserts

- Integrated lumi of 3000 fb⁻¹
- With previous solution, doses of 180 MGy on the coil [talks by F. Cerutti, L. Esposito]
 - Not acceptable!
- The main news: the MGy dominate over the mW/cm³
- Rough scaling to go below 50 MGy
 - 1.5 mm thickness of He ring
 - 3.7 mm cold bore thickness
 - 2 mm beam screen
 - 6 mm thick W inserts
- Analysis in progress by WP10
 - 50 MGy is a first (nonconservative) guess, estimates needed
 - We are also considering 20 MGy (data within July)

OTHER SIDE EFFECTS

- Positive side effects
 - This also brings the dT on the coil from 2 K (probably too much) to acceptable values [talk by H. Allain, R. Van Weelderen]
 - Analysis of the case with 6 mm W is being done
 - Beam screen will allow to considerably reduce heat load on the magnet (now 800 W)
- Negative side effects
 - Less performance
 - About 30 mm coil aperture go with shielding and cold bore etc.
- This pushes to 150 mm aperture to recover performance
 - For 150 mm one has ~120 mm for the beam to stay below 50 MGy

- First estimate of the gradient
 - We assumed 170 T/m for 120 mm, and 150 T/m for 140 mm at ~80% of short sample
 - We rescale the 140 mm values (150 mm T/m) \rightarrow 140 T/m operational gradient as a target
 - The increase in length is small (50 cm)
- But the total stored energy 80% larger than HQ \otimes
 - More than 60% comes from the aperture increase

		HQ	MQXF 140		MQXF 150	
Aperture	(mm)	120	140	17%	150	25%
Gradient	(T/m)	170	150	-12%	140	-18%
Energy/m	(MJ/m)	0.85	1.20	41%	1.41	65%
Length	(m)	7.2	7.7	7%	8.1	12%
Energy	(MJ)	6.2	9.2	49%	11.3	82%

- Gradient: $-18\% \rightarrow$ Current density: -18%
 - This is probably the key point
- Cable surface:+36%
- Moderate increase of current: 12% (0.82*1.36=1.12)

		HQ	MQXF 140		MQXF 150	
Aperture	(mm)	120	140	17%	150	25%
Gradient	(T/m)	170	150	-12%	140	-18%
Energy/m	(MJ/m)	0.85	1.20	41%	1.41	65%
Length	(m)	7.2	7.7	7%	8.1	12%
Energy	(MJ)	6.2	9.2	49%	11.3	82%
N. Strands	(adim)	35	40	14%	40	14%
Strand diam.	(mm)	0.778	0.778	0%	0.85	9%
Cable width	(mm)	15.2	17.3	14%	18.9	25%
Sc current density Current	(A/mm ²) (kA)	1801 14.5	1613 14.8	-10% 2%	1485 16.3	-18% 12%

- To lower stress we have to lower current density
 - This is also good for protection (next slide)
- Therefore, we propose to keep the same ratio coil width/aperture, i.e. increase cable width of 25%
- This is done by putting more strands (40) and increasing strand diameter (0.85 mm)
- Marginal increase of stress (below 10 MPa)

		HQ	MQXF 140		MQXF 150	
Aperture	(mm)	120	140	17%	150	25%
Gradient	(T/m)	170	150	-12%	140	-18%
Energy/m	(MJ/m)	0.85	1.20	41%	1.41	65%
Length	(m)	7.2	7.7	7%	8.1	12%
Energy	(MJ)	6.2	9.2	49%	11.3	82%
N. Strands	(adim)	35	40	14%	40	14%
Strand diam.	(mm)	0.778	0.778	0%	0.85	9%
Cable width	(mm)	15.2	17.3	14%	18.9	25%
Stress	(MPa)	128	137	7%	136	6%

- Larger cables surface (36%) → much larger available MIITS in the cable (+86%)
 - Dump resistors for these large inductances are not viable
- For HQ one had ~30 ms to quench all the magnet before reaching 300 K – very tight ☺
- For MQXF 150 we have \sim 45 ms \odot
 - Notwithstanding much larger energy, protection looks a bit more comfortable – to be checked on full model

		HQ	MQXF 140		MQ	XF 150
Aperture	(mm)	120	140	17%	150	25%
Gradient	(T/m)	170	150	-12%	140	-18%
Energy/m	(MJ/m)	0.85	1.20	41%	1.41	65%
Length	(m)	7.2	7.7	7%	8.1	12%
Energy	(MJ)	6.2	9.2	49%	11.3	82%
N. Strands	(adim)	35	40	14%	40	14%
Strand diam.	(mm)	0.778	0.778	0%	0.85	9%
Cable width	(mm)	15.2	17.3	14%	18.9	25%
Γ=Available MIITS	(MA ² s)	17	22	31%	32	86%
Γq=MIITS of global quench	(MA^2s)	11	14	33%	20	89%
$(\Gamma - \Gamma_q)/I_o^2$	(ms)	31	37		45	

- We need a larger cold mass size:
 - Space for helium container in SS
 - Larger aperture
 - Mechanical structure
 - Fringe fields
 - Larger holes in the iron for heat load (to be verified if still needed with new shielding)
- We propose to keep the ma e cryostat size, and to add 50 mm to the cold mass, going from 570 to 630 mm
 - 30 mm for the larger aperture, 20 mm for the SS shell, 10 mm for the iron
 - This can fit the same cryostat without going to non standard techniques [L. Williams]
 - ~20% increase in weigth

SUMMARY

- Proposals
 - Adopt 150 mm aperture with Nb₃Sn as baseline
 - Increase number of strands from 35 to 40
 - Increase strand diameter from 0.778 to 0.85 mm
 - Increase cold mass size from 570 to 630 mm
- A large shielding is needed to avoid radiation damage
 - Reducing available aperture for the beam to ~120 mm
 - Heat load should become a negligible aspect
 - Estimates of radiation damage on HQ materials needed, possible improvements to be considered
- Protection is a very important issue
 - 150 mm with this cable looks easier, results from LASA team on full model are needed