Rucio

Vincent Garonne，CERN

ATLAS Jamboree，Geneva，December 2012

Background

- The Distributed Data Management project manages ATLAS data on the grid
- The current system is Don Quijote 2 (DQ2)
- 130 Petabytes
- 600k datasets
- 355 million files
- 800 active users
- 130 sites
- DQ2 works, but

- Scaling problems, heavy operational burden and difficulties to add new features and technologies

The Next Version - Rucio

- Rucio is an evolution from DQ2 designed to ensure system scalability, reduce operational overhead and support new ATLAS use cases
- The concepts are described in the Rucio Conceptual Model(v2) document [CDS Link]
- The pilot service has been delivered in November 2012
- The target deployment and the decommissioning of DQ2 are scheduled for 2014 after the "Long Shutdown I" (LSI)
- A plan for preliminary changes in DQ2 has been defined to facilitate the final migration
- Rucio supports user, group and service accounts
- Better management of users, physics groups, ATLAS activities, data ownership, permission, quota, etc.
- Lightweight and scalable token based authentication system which supports many types of credentials (X509, Kerberos, etc.) for read\&write operations
- ATLAS grid users need to have a CERN account
- The mapping \{grid nickname - CERN ATLAS AFS/LXPLUS account\} has been recently enforced
- Do site administrators need to access DDM ?
- Who ? What? Why ? How ?

Use Cases Collection

- The DQ2 load is extracted, mapped to use cases, and transformed into a Rucio load
- Functional testing and performance evaluation of Rucio
- Gradual migration of external applications (e.g., PanDA)
- Latest stable DQ2Clients (2.3.0) introduce Rucio accounts
- Monitoring infrastructure based on Hadoop has been established to analyse central services traffic
- All sites must be upgraded to the latest stable
- Automatic with CVMFS
- Old clients will be blocked

Hits Per Application

Rucio Namespace

- Data hierarchy with metadata support
- Files are grouped into datasets
- Datasets/Containers are grouped in containers

Replica Management

- Rucio Storage Element (RSE) uniquely identifies storage space with attributes
- Name, supported protocols, QoS, space properties, etc.
- RSEs can be grouped in many logical ways by tagging, e.g., CLOUD=UK and Tier=1
- Accounts manage their data with replication rules defined on data identifiers and a list of RSEs
- It gives the minimum number of replicas on the grid
- e.g., User jdoe wants 2 copies of jdoe:datasetl on cloud=UK and USERDISK
- Accounts are only charged for files on which they have set replication rules
- Number of replicas requested, not physically existing
- A cache is an RSE, tagged as volatile, for which Rucio doesn't control all file movements
- e.g., Storage service keeping additional copies of files to reduce response time and bandwidth usage
- The application populating the cache must register and unregister file replicas in Rucio
- The replica location on volatile RSEs can have a lifetime
- Replicas on volatile RSEs are excluded from the Rucio replica management system
- Explicit transfer requests can be made in order to populate the cache

Storage Interfaces

- Rucio Storage Element wrapper
- High-level user abstraction
- cf., Mario's talk
- Deterministic mapping between the logical file name and its path name in a scoped namespace to remove/decrease external file catalog lookups
- End of use of the LCG File Catalog in 2014
- e.g. mapping: <Scope>|??!??! < File name>
- cf., Cedric's talk
- Plug-in interface using standard remote data access and control protocols
- In addition to SRM

SRM

ATLAS plans to migrate to a SRMless world ...

DDM Use cases	Clients
Copy	lcg-cp (lcg-util)
Redirection	lcg-getturls (lcg_util)
Third party transfer	glite-transfer-* (FTS)
Deletion	gfal_deletesurls (gFal)
Staging	gfal_prestage* (gFal)
Accounting'	lcg_stmd (lcg_util)
Renaming ${ }^{2}$	XX

[^0]
Alternatives:

- Copy, redirection, deletion and renaming use cases are possible with:
WebDAV: // - Open source clients, e.g., wget, aria2c, etc.
- Particularly relevant for the dq2-get use case
xroot:// - e.g., Interactive data access from jobs
- Both protocols are supported by 85% of the sites

CASTOR

- The central Rucio migration infrastructure requires protocols that allow renaming
- The migration will commission them
- Load balanced front-ends should be published in BDII or AGIS
- Can we get rid of them ? accounting? ACLs ?
- Example of data organization on disks with Rucio
$>$ ls -R rucio
rucio/data12_8TeV rucio/group/...
rucio/group/perf-tau/
rucio/mc11_7TeV/
rucio/user/... rucio/user/jdoe/
- ACLs should be defined at the scope directory level
- Online accounting needs for the root directory path
- e.g., Results of an incremental du executed every 30 min . on /rucio in /atlas/rucio/info/space-info.json

Accounting \& Consistency

- Fine grained accounting can be achieved with dumps
- i.e., publication of a daily dump with everything under /rucio in /atlas/rucio/info/namespace.csv
- Dumps can be collected remotely and map-reduced
- This also covers the consistency check use case to detect dark data
- Data on disks but not in catalog (and vice-versa)
- e.g., crosscheck of the content of rucio/data12_8TeV against the Rucio catalog in case of accounting numbers mismatch
- Third party transfers are possible with FTS and gridftp
- Load balanced front-ends should be published in BDII or AGIS
- More alternatives with FTS3
- Only one use case remaining: Tape recall
- bringOnline and cache pinning
- It concerns Tier0 and Tierl sites
- With the proposed mechanisms, SRM can be dropped for disk sites

http://rucio.cern.ch

[^0]: '... and consistency
 ${ }^{2}$ Functionality needed for the Rucio migration

