ATLAS DP and MC plans for LS1

L. Fiorini (U. Valencia and IFIC)

ATLAS Distributed Computing Jamboree 10/12/2012

Outline

- Data taking
 - CPU usage
 - Data storage
 - Tier0 operations
- 2012 reprocessing
 - Motivations
 - CPU and disk usage on the GRID
- Reprocessing Plans for LS1
 - 2011 data reprocessing
 - FDR of the full chain
- Physics Validation for LS1
- MC production for LS1 → covered by Physics Coordination talk.
- Challenges for Run2

2012: Annus Mirabilis for ATLAS and LHC?

- 2012 was certainly an extraordinary year for LHC and ATLAS.
- Computing and ADC contributed to the success of this year making possible to have the results ready a few weeks after the data was stored on disk.
- LHC achievements in 2012 are remarkable:
 - Delivered integrated luminosity passed 23 fb⁻¹
 - Instantaneous luminosity was close to design one, >7.7• 10³³ cm⁻² s⁻¹

Pileup in 2012

- One of the main concerns in 2012 was dealing with high pileup environment (~factor 2 higher than in 2011), that have impact not only on the LHC physics, but on the full chain from the operation to the data distribution on the GRID.
- Significant optimization to reduce CPU time vs pileup was done in the 17.2.X release compared to 17.0.X (used for the 2011 run).
- RAWtoESD, that is the slowest part of the reconstruction, scales more than linearly with mu, passing from ~20s for mu=20 to more than 40s for mu=30 (JetTauEtmiss stream).

Pileup and Data storage

- Pileup not only affects the reconstruction time, but also the size of the output datasets.
- ESD and AOD data formats increase more rapidly than RAW wrt pileup.

- Space used by 2012 data is (without considering replicas!) for the main physics streams (JetTauEtmiss+Egamma+Muons):
 - RAW: ~ 2 PB
 - ESD: not saved (would of the order of the 6 PB)
 - AOD: ~600 TB
 - DESD: ~<600 TB
 - Calibration and Alignment activities: ~300 TB

Tier0 operations in 2012

- Tier0 operations went quite smooth in 2012, with few intense periods:
 - Tier0 operates with an **average** trigger rate from Point1 of 400 Hz (calibration and delayed streams not included) and can run in parallel 6000 reconstruction jobs.
 - In current trigger/computing conditions, Tier0 is capable of reconstructing about 1fb⁻¹ of data per week.
 - More intense periods were the weeks close to ICHEP conference, in order to deliver the reconstructed data for the Higgs analysis in a timely matter and a large backlog period in November due to several LSF shortages.

Data Replication on the GRID

- Data Replicated on the GRID to ensure safe storage and smooth access.
 - RAW: T1_DATADISK + 1 copy on T1_DATATAPE (2 different T1s).
 - RAW for 2012 were exceptionally been kept on disk (discovery case). We'll start deletion of the RAW when the reprocessing has been declared finished.
 - ESD: "Life without ESD" model. Only kept on disk for small streams (e.g. express). For physics streams deleted after 3 weeks on disk, no tape copy.
 - Time on disk has been adjusted a couple of times in 2012 passing from 6 weeks to 4 weeks in August and then from 4 to 3 weeks in November.
 - AOD: 2 T1 primary copies + 1 secondary copy
 - DESD: 1 T1 primary copy + 1 secondary copy
 - DRAW: 1 primary copy in CERN-PROD_DATADISK
 - TAG and HIST: 1 primary copy in CERN-PROD_DATADISK
- Express stream can be consider a small stream compared to the physics streams, having a flat rate of 10 Hz compared to 400 Hz average for physics.
- Space on disk is also of the order of 2.5-3% of the physics stream (designed to be 10%).

2012 October Reprocessing

- Reprocessing of period A-H data (~17 fb⁻¹ of data, 2 billion events).
- •Purpose: Provide best 2012 data we can w/ rel 17 for 2013 winter conferences:
 - Improves alignments of ID and MS
 - Correct FCAL en. scale in C1-C8
 - Improves LAr DQ efficiency (gain 1-2% of statistics) and recover other isolated DQ issues
 - Apply all AODFix (apart from MET fix) in Reco.
 - Many other improvements. List here: https://twiki.cern.ch/twiki/bin/viewauth/Atlas/Summer2012Reprocessing
- Streams reprocessed: express_express, physics_CosmicCalo, physics_CosmicMuons, physics_Background, physics_Egamma, physics_JetTauEtMiss, physics_MinBias, physics_ZeroBias, physics_Muons, physics_IDCosmic, physics_standby, debug_hltacc
- •Then the delayed streams (being prepared): physics_jetCalibDelayed, physics_HadDelayed, physics_Bphysics

Stream/Period	Period A	Period B	Period C	Period D	Period E	Period G	Period H	TOTAL
Egamma	43,266,159	177,569,377	51,382,952	113,173,567	86,690,531	43,857,431	53,569,900	569,509,917
Muons	43,661,420	163,597,791	80,935,368	112,743,072	81,667,914	41,182,058	49,412,952	573,200,575
JetTauEtmiss	64,345,937	189,247,789	53,773,871	121,460,633	111,745,415	57,078,247	66,807,066	664,458,958
Background		19,921,757	5,257,730	14,675,969	10,433,550	6,571,508	6,620,367	63,480,935
MinBias	6,000,436	16,156,158	40,824,856	10,456.014	7,276,542	3,652,824	22,526,657	106,893,487
TOTAL AOD	157,273,952	566,492,872	232,174,777	372,509,255	297,813,952	152,342,068	198,936,942	1,977,543,872

2012 Reprocessing

A. Lucotte

Data accumulated up to MD3 + period H 2 billion events → twice the size of 2011 reprocessing CPU Timing : ~25s/evt (pile-up)

- → Double that of 2011, due to higher pileup Reprocessing was dispatched to all Tier1 to cope with the CPU requirements
- AOD Size: 300kB/evt resulting in ~0.6 PB
- ESD size too large : *life w/o ESDs*. Only kept for 2 periods (B11+D3)

MC simulation

MC reconstruction

Reprocessing

Group production

Maximum: 127,727 , Minimum: 80,723 , Average: 96,480 , Current: 88,865

2012 Reprocessing (2)

Maximum: 13,447,988,512 , Minimum: 0.00 , Average: 5,653,034,091 , Current: 532,995,419

Total CPU consumption was ~45 •109 s (CPU time). 1/4 of it in BNL. CPU efficiency was high (>90%).

CPU usage was high in the beginning (periods D+B running), then it decreased quickly.

Jobs failure rate was of the order of 6%.

2012 Reprocessing (3)

Space used for the reprocessing quickly increased in less than 1 month by 2 PB, creating issues to few Tier1 sites.

Situation improved reducing the lifetime of the ESD from 4 weeks to 3, removing the 2011 HI ESD (on disk for reprocessing) and by removing the transient unmerged files.

Processing in 2013

- p+Pb run scheduled at the beginning of 2013: ~1 month of data taking, with eventually few days of pp collisions at 2.76 TeV.
- This is the last data taking period before LS1.
 - Pilot runs in September 2012 allowed us to test reconstruction and computing requirements for this kind of data (runs 210184, 210185, 210186).
 - From the computing point of view, these events are more similar to pp MinBias events than HI events:
 - Reco CPU time: ~ 12s/event
 - RAW: 1.1 MB/event
 - ESD: ~1 MB/event
 - NTUP: 0.5 MB/event

 Hard probes stream was not enabled for the pilot run, but we don't expect the overall picture to change significantly.

Plans for reprocessing during LS1

- 2012 Reprocessing campaign with rel 17.2.X over before Christmas.
- Currently there are no firm plans for reprocessing campaigns during LS1.
- We are doing preparatory studies for a reprocessing of 2011 in the first part of 2013, which is not decided yet:
 - Goal is to deliver a consistent data+ MC dataset of both 2011 and 2012 for the final results of ATLAS Run1 data (e.g. Higgs results) reconstructed with release 17.2.X. This campaing would includes:
 - the reprocessing of 2011 data, that is less data and faster to reconstruct than 2011 (ETA<1 month).
 - the reprocess (DIGI+RECO) of MC11c samples, that is the most demanding part of the 2011 reprocessing.
 - ~3 months were needed in the original processing and we assume that it will not going to change significantly.

Plans for reprocessing during LS1 (2)

- PhysCoord is evaluating the Pros&Cons of the 2011 reprocessing:
 - It has to be ready for final ATLAS papers of 2011+2012 data (summer 2012?).
 - Some analysis will benefit from better 2012 reconstruction+object ID.
 - Systematics uncertainties of the 2011+2012 combination could be reduced.
 - Enough extra time after the end of the reprocessing should be granted to rederive the PC and analysis corrections and scale factors.
 - The 2011 data reprocessing will compete for resources during several months with other production campaigns, such as MC production
 - Trigger simulation in 17.2.X is not exactly the same used in rel16 for MC11c.
 - Validation schedule of the reprocessing is rather long and it cannot be easily compressed:
 - Software validation: sample A comparing to mc11c (with new / old pileup sample) and comparing one big data run.

• Express stream reprocessing and DQ signoff to validate the data over all the chain.

Plans for reprocessing during LS1 (3)

- •Plans for other reprocessing besides 2011 data are purely speculative
- ATLAS is undergoing a full review to improve the analysis model during LS1.
 - The work of the analysis model panel already started.
 - The review is closely tied to all other aspects of ATLAS and their plans for LS1:
 - Trigger, DP, reconstruction, computing, ADC, data format, streaming, replication, etc.
- We should foresee at least 1 Full Dress Rehearsal during LS1 to test the full chain from Tier0 to the plots for the press.

Physics Validation MC Production

Validation jobs increase for main deliveries: MCXXa, MCXXb,... and data reconstruction release

- Around 70 validations tasks during 2012.
- Typically each of them means a Sample A, which corresponds to 5.5 TB for digi+reco and 1.3 TB for simulation.

Physics Validation CPU in 2012

J. E. Garcia

Maximum: 1.713.076.805 . Minimum: 0.00 . Average: 534.596.458 . Current: 541.086.759

CPU Consumption through 2012

Validation jobs are not constant in time. Validation schedule has peaks and holes.

2012 is probably a good representative of of what may happen next year.

Challenges for Run2

- Several challenges are awaiting us for the restart of operations after LS1.
- Pileup conditions in 2015 will depend mainly on the bunch spacing.
 - For 50 ns, it would be in the range of 40-80 for 1-2+ 10³⁴ cm⁻²s⁻¹.
 - For 25 ns, it would be in the range of 25-50 for 1-2+ 10³⁴ cm⁻²s⁻¹.
- •We have to be prepared to the worst case scenarios for 2015.
- The Trigger rate should be close to read-out saturation, as usual. Possibly at the level of 1 kHz output passed to a 4th level of trigger at Tier0, where events will be filtered further (to be decided).
- •It is necessary to make software and computing faster, more scalable and reduce the memory footprint.
- ATLAS Streaming and data replication could also be revisited during LS1.

Conclusions

- WLCG was crucial to deliver physics rapidly during the first years of LHC data.
- 2012 was an exciting year: high pileup, high trigger rates and stringent deadlines put the computing and DP under strain.
- Reprocessing of 2012 data happened in parallel of data taking.
 - Main issue was data space available at Tier1 and sharing of resources with MC production.
- Currently there are no firm plans for reprocessing and physics validation campaigns during LS1:
 - \rightarrow assume requests will be \leq 2012.
- LS1 is the only opportunity in many years for disruptive changes in the ATLAS work-flow model.
- Restart of data-taking will bring new challenges for DP and computing with possibly much higher pileup and trigger rates.

Support Material

Inner Detector

ID alignment

B-layer conditions problems for part of period A

TRT fix for the run in C8 which had the wrong dead straw list uploaded

LAr Calorimeter

FCAL HV calibration corrections [Improve 1.4/fb]

Problems with HV power supply system of FCAL channels for which HV readings were unreliable. Affects HV scale determination, resulting in ~10% energy shift in 1/4 φ-region;

- Need correct HV reading which required new measurement of faulty modules
- Use corrected HV readings to recompute scale corrections
 - ... applied at reconstruction levels (when building raw channels)

Cell-level OFC timing corrections

Cell-level timing corrections to be applied to the OFC-reconstructed time to improve LAr timing.

-- Gain of 1-2%.

LAr noise mask and event veto [recover 55/pb]

Apply proper noisy cell masking and noise burst vetos for a couple of runs in A4 and A8

Muons

Calibrations

MDT calibration update for B1-B5 (correct a wrong flag in DB)

Calibration streams were off for some runs in period D

Alignment

- Barrel+Endcap alignement now includes EC alignment from I-lines (CSC internal alignement)
- Using new Muon Spectrometer layout, ie ATLAS-GEO-20-00-02

Tile Calorimeter

Fix for the hot cell affecting B1+B2 Timing for one run in B4.

AODFix

AODFix currently applied to the MC production:

– new e/ γ isolation, reurun track isolation for μ , update of τID , τ - μ /e veto, τ -energy scale, MetRef bugFix

Applied those changes at the RECO level for data to save significant time in D3PD making

- Validated by comparing AODFix vs recontruction

Bulk reprocessing

Phase II of the reprocessing:

- using the Beam spot & Conditions derived in ES
- using latest Conditions (Lar and Tile updates)

Streams reprocessed:

- all main physics streams, then JetCalibDelayed streams

Reprocessing order:

- Period D, B, (highest stat) then A, C, E and G
- No ESD kept for main physics streams (keep only B11+D3)

Bulk reprocessing outputs : "Life w/o ESD"

- 1) Reconstruction step (r-tag)
- AOD, HIST, TAG, DRAW
- DESD (stream-dependent):

[MinBias] DESD_MBIAS, DESD_SGLMU, DESDM_MET

[EGamma] DESD_EGAMMA,DESD_PHOJET,DESD_SGLEL, RPVLL

[Muons] DESD_SGLMU, DESD_RPVLL

[JetTauEtMiss] DESD_CALJET,DESDM_TRACK,DESDM_MET,_RPVLL

- 2) Merging of output formats (p-tag)
- AOD, HIST, TAG and DESDs will be merged
- 3) Production of DAOD fand DESD (p-tag)
- DAOD ZLL, DESD ZLL from DRAW

Bulk reprocessing

Physics streams:

- -- physics_CosmicMuons
- -- physics_CosmicCalo
- -- physics_Egamma
- -- physics_Muons
- -- physics_JetTauEtMiss
- -- physics_Background
- -- physics_MinBias
- -- physics_IDCosmic
- -- physics_ZeroBias
- -- express_express
- -- debug_hltacc
- -- physics_standby
- + Delayed streams:
- -- physics_jetCalibDelayed
- -- physics_HadDelayed
- -- physics_Bphysics

DRAW reprocessing

Physics streams:

- Muons and Egamma streams
- Required by RecoPerf

Maximum: 2,997 , Minimum: 18.23 , Average: 928.73 , Current: 2,997

