
1

Plans for “Clouds” in the U.S. ATLAS

Facilities

Michael Ernst
Brookhaven National Laboratory

The Experts and Actors

• This work was/is primarily carried out by
– John Hover (BNL)

– Jose Caballero (BNL)

– Xin Zhao (BNL)

• People joining
– Hironori Ito (BNL) w/ focus on Cloud Storage

– Alexandr Zaytsev (BNL)

– Lincoln Bryant (UoChicago)

• There are also cloud activities for analysis
– Doug will talk about that after me

mernst@bnl.gov
3

Outline

• Basic Cloud Properties

• Rationale/Benefits Recap

• Dependencies/Limitations

• Current BNL Status
– Openstack

– VMs with Boxgrinder

– Panda queue

– Local batch virtualization support

• Next Steps and Plans

Aspects forming a Cloud System

Aspects forming a Cloud System

Aspects forming a Cloud System

Aspects forming a Cloud System

Aspects forming a Cloud System

Aspects forming a Cloud System

Non-Functional Aspects

• Elasticity

– Capability of infrastructure to adapt to changing,

potentially non-functional requirements

• Amount of data supported by app, # of concurrent users

– There is horizontal and vertical scalability

• Horizontal: # of instances to satisfy changing demands

• Vertical: Size of instances

– Cloud scalability involves rapid up- and

downscaling

Non-Functional Aspects

• Availability and Reliability

– Ensure constant operation without disruption
• No data loss, no code reset during execution, etc

– Typically achieved through redundant resource
utilization

• Many aspects move from hardware to software-based
solutions (e.g. redundancy in the file system vs. RAID
controllers, stateless front end servers vs. UPS, etc)

– Provide redundancy for services and data so
failures can be masked transparently

• Fault tolerance also requires ability to introduce new
redundancy, online and non-intrusively

Non-Functional Aspects

• Agility and Adaptability

– Capabilities that strongly relate to Elasticity

• On-time reaction to changes (# of requests and size)

• Changes to environmental conditions (types of resources)

• Requires resources to be autonomic and enable them to

provide self-* capabilities

mernst@bnl.gov
13

Dependencies/Limitations

• Using Cloud in larger US ATLAS facilities context
requires

– X509 authentication mechanism. Current platform
implementations all require username/passwords.

– Accounting mechanism.

– Automated, supported install and configuration.

• Intrusive: Fundamental change
– Does represent a new lowest-level resource management layer.

– But, once adopted all current management can still be used.

• Networking and Security
– Public IPs require some DNS delegation, may also require

additional addresses. (No public IPs at BNL due to lack of
delegation).

– Some sites may have security issues with the Cloud model.

mernst@bnl.gov
14

Dependencies/Limitations

• ATLAS infrastructure not designed to be fully
dynamic:

– E.g. fully programmatic PanDA site creation and
destruction

– DDM assumes persistent endpoints
– Others? Any element that isn't made to be created,

managed, and cleanly deleted programmatically.

mernst@bnl.gov
15

BNL OpenStack Cloud
• OpenStack 4.0 (Essex)

– 1 Controller, 100 execute hosts (~300 2GB VMs),
fairly recent hardware (3 years), KVM virtualization
w/ hardware support.

– Per-rack network partitioning (10Gb throughput
shared)

– Provides EC2 (nova), S3 (swift), and an image
service (glance).

– Essex adds keystone identity/auth service,
Dashboard.

– Programmatically deployed, with configurations
publically available.

– Fully automated compute-node installation/setup
(Puppet)

– Enables 'tenants'; partitions VMs into separate
authentication groups, such that users cannot
terminate (or see) each other's VMs.

mernst@bnl.gov
16

BNL OpenStack Layout

Potential I/O Bottleneck

• multiple gateways

• public IP on second interface

mernst@bnl.gov
17

BNL VM Authoring
• Programmatic ATLAS Worker Node VM creation

using Boxgrinder (BG)

– http://boxgrinder.org/

– http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/

• Notable features:
– Modular appliance inheritance. The WN-atlas definition

inherits the WN-osg profile, which in turn inherits from base.

– Connects back to static Condor schedd for jobs.

– BG creates images dynamically for kvm/libvirt, EC2,
virtualbox, vmware via 'platform plugins'.

– BG can upload built images automatically to Openstack (v3),
EC2, libvirt, or local directory via 'delivery plugins'.

– OSG now actively taking interest in BG, i.e. for testbeds

mernst@bnl.gov
18

PanDA
• BNL_CLOUD

– Standard production Panda site.

– Configured to use wide-area stagein/out

(SRM, LFC), so same cluster can be

extended transparently to Amazon or

other public academic clouds.

– Steadily running ~200 prod jobs on

auto-built VMs for months. No

 facility related job failures

– HC tests, auto-exclude enabled -- no

problems so far.

– Performance actually better than main BNL prod site. (next

slide).

– Also ran hybrid Openstack/EC2 cluster for a week. No

problems.

mernst@bnl.gov
19

Performance
• BNL_CLOUD: BNL_CVMFS_1:

• Result: BNL_CLOUD actually faster (1740s vs. 1960s)

– Hammercloud (ATLASG4_trf_7.2...)

– Setup time (no AFS)? No shared filesystem?

– Similar spread for other tests (e.g., PFT Evgen 16.6.5)

– Anticipate using Iljia’s HC framework to conduct more tests

mernst@bnl.gov
20

Plans (1/3)
• Cross-group Puppet group

– Initiated at last S&C week. Includes CERN, ATLAS,

and USATLAS people. Built around puppet-

users@cern.ch

– Shared configuration repo set up at

https://svn.usatlas.bnl.gov/svn/atlas-puppet

• Refine setup and management

– Generalize Puppet classes for node setup for use

by other sites.

– Finish automating controller setup via Puppet.

– Facilitate wider use of BNL instance by other US

ATLAS groups.

mailto:puppet-users@cern.ch
mailto:puppet-users@cern.ch
mailto:puppet-users@cern.ch
mailto:puppet-users@cern.ch
https://svn.usatlas.bnl.gov/svn/atlas-puppet
https://svn.usatlas.bnl.gov/svn/atlas-puppet
https://svn.usatlas.bnl.gov/svn/atlas-puppet
https://svn.usatlas.bnl.gov/svn/atlas-puppet

mernst@bnl.gov
21

Plans (2/3)

• Decide on final UserData/Runtime contextualization:

– Will allow the Tier 2/3 Cloud group to use our base

images for their work.

– Completely parameterize our current VM

• AutoPyFactory (APF) development

– Full support for VM lifecycle, with flexible algorithms to

decide when to terminate running VMs.

– Cascading hierarchies of Cloud targets: Will allow

programmatic scheduling of jobs on site-local->other

private->and commercial clouds based on job priority

and cloud cost.

AutoPyFactory: Elasticity

• Static Condor schedd
– Standalone, used only for Cloud work

• 2 AutoPyFactory (APF) Queues
– 1 monitors a local Condor schedd,

• When job slots are Idle, submits WN VMs to IaaS (up to defined limit).

• When WNs are unclaimed, shuts them down.

– 2 monitors a Panda queue
• when there are activated jobs, submits pilots to local Condor queue.

• Worker Node VMs
– Generic Condor startds connect back to static Condor cluster.

– All VMs are identical

• Panda site
– Associated with BNL/Tier-1 SE, LFC, CVMFS-based releases.

– But no site-internal configuration (NFS, file transfer, etc).

mernst@bnl.gov
23

AutoPyFactory: VM Lifecycle

• Instantiation
– When we want to expand the resource, a VM is instantiated, for as

long as there is sufficient work to keep it busy.

• Association
– In order to manage the lifecycle, we must track the association

between a particular VM and a particular machine in the cluster.

• The cloud API does not provide info as to which VMs are running
jobs

– Done via embedded DB (with Euca tools) or a ClassAd attribute
(Condor-G)

• Retirement
– When we want to contract the cluster, APF instructs VM to retire all

batch slots, i.e. finish the current job but accept no new.

• Termination
– Once all batch slots on a VM are idle the VM is terminated.

AutoPyFactory: Cloud Interactions
• APF uses a plugin architecture to use Cloud

APIs on EC2 and OpenStack.
– Current development uses Eucalyptus CLI client tools. (Euca2ools)
– A future version of Condor will support both EC2 and OpenStack, at

which point interaction can be via Condor-G (currently a Release
Candidate).

• APF will support hierarchies and weighting
– We can create/establish multiple Cloud resources in order of

preference, and expand and contract preferentially, e.g.,
• Local OpenStack (free of charge, local)
• Another ATLAS facility OpenStack (free of charge, remote)
• Academic cloud at another institution (free of charge, remote)
• Amazon EC2 via spot pricing. (low cost, remote)
• Amazon EC2 via guaranteed instance. (costly, remote)

– “Weighting”: Create VMs proportional to jobs waiting in the queue
– Prototype by end February

mernst@bnl.gov
26

Plans (3/3)
• Expand usage and scale

– Scale up to a size comparable to main Grid site.

– Dynamically re-partitionable between groups.

– Option to transparently expand to other private
clouds, and/or commercial clouds.

– Run large-scale

• Fully document dynamic Fabric and VM

configuration
– To allow replication/customization of both site fabric

deployment and job workflow by other ATLAS sites,

and by other OSG VOs.

– To allow specialized usage of our Cloud by users.

Summary of Mid Range Plans

• A lot to be decided …

• Have started to deploy virtualized resources
for analysis at MWT2

– More expected to follow after evaluation by users

• Expect to grow cloud resources in Facilities

– at BNL to 1k – 2k VMs in the next 3 – 6 months
• Scalable network architecture

– Cloud resources at 1 US Tier-2 in Q3/4 2013
• Prerequisite: Install everything programmatically

• Need to address storage in the cloud

mernst@bnl.gov
28

Extra Slides

mernst@bnl.gov
29

Overall Rationale Recap

• Why Cloud vs. current Grid?
– Common interface for end-user virtualization management, thus..

– Easy expansion to external cloud resources - same workflow to

expand to:

• Commercial and academic cloud resources.

– Dynamic repartitioning of local resources, easier for site admins

– Includes all benefits of non-Cloud virtualization: customized OS

environments for reliable opportunistic usage.

– Flexible facility management:

• Reboot host nodes without draining queues.

• Move running VMs to other hosts.

– Flexible VO usage:

• Rapid prototyping and testing of platforms for experiments.

mernst@bnl.gov
30

BNL OpenStack Cloud (cont)

• Ancillary supporting resources
– SVN Repositories for configuration and development

• E.g. boxgrinder appliance definitions.

– See:

• http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/

– YUM repos:
• snapshots (OSG, EPEL dependencies, etc):

• mirrors

• grid dev, test, release

– See:

• http://dev.racf.bnl.gov/yum/snapshots/rhel5/
• http://dev.racf.bnl.gov/yum/grid/

http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/
http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder/
http://dev.racf.bnl.gov/yum/snapshots/rhel5/
http://dev.racf.bnl.gov/yum/snapshots/rhel5/
http://dev.racf.bnl.gov/yum/grid/
http://dev.racf.bnl.gov/yum/grid/

mernst@bnl.gov
31

Simple WN Recipe
• Build and upload

– svn co http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder

– <edit boxgrinder to point to your Condor, with any auth required>

– boxgrinder-build -f boxgrinder/sl5-x86_64-wn-atlas-bnlcloud.appl

– . ~/nova-essex2/novarc

– glance add name=sl5-atlas-wn-mysite is_public=true
disk_format=raw container_format=bare --
host=cldext03.usatlas.bnl.gov --port=9292 <
build/appliances/x86_64/sl/5/sl5-x86_64-wn-atlas-bnlcloud/3.0/sl-
plugin/sl5-x86_64-wn-atlas-bnlcloud-sda.raw

• Describe and run images
– euca-describe-images --config=~/nova-essex2/novarc

– euca-run-instances --config ~/nova-essex2/novarc -n 5 ami-
00000002

– euca-describe-instances --config ~/nova-essex2/novarc

http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder
http://svn.usatlas.bnl.gov/svn/griddev/boxgrinder

mernst@bnl.gov
32

Elastic Prod Cluster: Components

• Static Condor schedd
– Standalone, used only for Cloud work.

• 2 AutoPyFactory (APF) Queues
– One observes a local Condor schedd, when jobs are Idle,

submits WN VMs to IaaS (up to some limit). When WNs are
Unclaimed, shuts them down. Another observes a Panda
queue, when jobs are activated, submits pilots to local cluster
Condor queue.

• Worker Node VMs
– Generic Condor startds associated connect back to local

Condor cluster. All VMs are identical, don't need public Ips,
and don't need to know about each other.

• PanDA site
– Associated with BNL SE, LFC, CVMFS-based releases.

– But no site-internal configuration (NFS, file transfer, etc).

mernst@bnl.gov
33

Programmatic Repeatability, Extensibility

• The key feature of our work has been to make all our
process and configs general and public, so others can use
it. Except for pilot submission (AutoPyFactory), we have
used only standard, widely used technology (RHEL/SL,

Condor, Boxgrinder, Openstack).
– Our boxgrinder definitions are published.

– All source repositories are public and usable over the
internet,e.g.:

• Snapshots of external repositories, for consistent builds:
– http://dev.racf.bnl.gov/yum/snapshots/

– http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/

• Custom repo:
– http://dev.racf.bnl.gov/yum/grid/testing

– Our Openstack host configuration Puppet manifests are
published and will be made generic enough to be borrowed.

– Our VM contextualization process will be documented and
usable by other OSG VOs/ ATLAS groups.

http://dev.racf.bnl.gov/yum/snapshots/
http://dev.racf.bnl.gov/yum/snapshots/
http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/
http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/
http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/
http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/
http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/
http://dev.racf.bnl.gov/yum/grid/osg-epel-deps/
http://dev.racf.bnl.gov/yum/grid/testing
http://dev.racf.bnl.gov/yum/grid/testing

