Danielle Larese Michigan State University Advisor: Raymond Brock ATLAS 08 Aug 2007

Two Projects

Histomaker Program

- Documentation tool
- Main body of program written in C++
- Outputs histograms and html files
- Run with ROOT
- Controlled with Python script
- Trigger Efficiencies
 - Understand group's analysis software
 - Write code to execute new trigger cuts
 - Try to increase trigger efficiencies

Histomaker Program

- Input two roottuples and tree name
- . Draw histograms of each leaf in tree
- Produce histograms leaves by making a pdgld number "cut" (e.g., plot only electron entries from leaf)
- Thus, each leaf is drawn multiple times
 Calculate and plot percent difference
- Save histograms as .gifs on a webpage for reference

Histomaker Program

Results available at

TopView1212 vs TopView1213 5200 Jimmyv

Electron transverse momentum using only electron entries (pdgld 11)

Trigger Overview

 Triggers are immensely important Responsible for choosing which 0.0005% of data will be written to tape For ATLAS, each trigger operates in a chain: L1 -> L2 -> EF

Trigger Efficiencies

- Want to increase efficiency.. how?
- Modify logic of trigger cuts
- Work within framework of MSU ATLAS group's analysis software (more C++, Python)
- Start with electrons: establish how many electrons pass all three levels (L1,L2,EF) for a specific trigger (EM25I,EM60)
- Compare to how many electrons pass EM251 or EM60

Why would "or" increase eff?

- EM25I Trigger: cut such that 95% of electrons >= 25GeV will pass, but also isolation requirement
- EM60 Trigger: cut such that 95% of electrons
 >= 60GeV will pass, no isolation requirement
- Thus it's possible that different "types" of electrons would pass each trigger
- Using a logical "or" operator might increase number of electrons passed

Let's Check that eff!

- First, examine efficiencies (at all three levels) of EM25I and EM60 triggers
- Also, note the "overall" efficiency of the EM25I and EM60 triggers by requiring that an electron passes L1 and L2 and EF
- Last, determine the EM25I "or" EM60 efficiency and find out if we were right - it's higher

Results

- EM25I eff: 90% (650 of 723 for 5200)
- EM60 eff: 38% (273 of 723 for 5200)
- "or" eff: 93% (671 of 723 for 5200)
- . As expected, "or" eff is higher
- This shows that trigger combinations have the ability to increase triggering efficiency!

A word about travel..

Many Thanks!

Michigan State University University of Michigan Dr Raymond Brock Dr Jean Krisch Dr Homer Neal CERN