

Geometric considerations in $Z \rightarrow \mu \mu$ decay simulation and reconstruction

Pat Whitworth Tulane University

ATLAS

- Muon Detectors
 - Monitored drift tube chambers
 - Thin gap chambers
 - Resistive plate chambers
 - Cathode strip chambers

Monitored Drift Tube chambers

- o 6 parallel layers
- Ionization electron drift time registration

μ track

- 6 coordinates
- Deformations monitored

Alignment: importance

o Incorrect measurements

- Especially at higher momenta
- Background more likely to be confused with event tracks
- Single MDT chamber spatial resolution ~40µm
 - Chambers must be aligned to 30µm accuracy (to provide desired momentum resolution)

Alignment: technique

RASNIK optical monitoring

- Allows relative chamber displacements to be measured
- Finds displacement of "mask" along the optical axis
- o A-lines
 - Corrections to nominal chamber position
- o B-lines
 - Chamber deformations and expansion

Why $Z \rightarrow \mu \mu$?

Observation of misalignment effects

- Momentum resolution
- Will not know "simulated" (real) momentum with real data
- Effects on simulated Z→µµ decay data can be studied for comparison to real decay data

The Reconstructed Z mass

- Well-known shape
- Width comparisons

1mm Misalignment

Results (Pending)

Perfect Geometry **Real Geometry** regood_good regood_good momentum resolution momentum resolution Entries 807 Entries 784 -0.0005966 -0.001834 Mean Mean counts 50 counts RMS 0.03293 RMS 0.0346 45 Underflow Underflo 0 0 Overflow **40**E Overflow 0 40 χ² / ndf 56.73 / 53 γ^2 / ndf 77.78 / 52 Single muon $\textbf{43.07} \pm \textbf{2.06}$ 35 37.04 ± 1.91 Constant Constan Mean -6.046e-05 ± 1.033e-03 -0.0008627 ± 0.0011903 Mean 30 Sigma 0.02783 ± 0.00087 Sigma 0.03049 ± 0.00110 momentum 30 25 20 resolution 20 15 10⊟ 10 · 5 -8.2 0.15 0.2 -8.2 -0.15 -0.1 -0.05 -0 0.05 0.1 -0.15 -0.1 -0.05 0.05 0.1 0.2 -0 0.15 (ft4-rt4)/rt4 (ft4-rt4)/rt4 dimudata_reco mass resolution dimudata reco mass resolution Entries Entries 387 369 0.001333 0.002782 Mean Mean counts unts 60 RMS 0.03249 RMS 0.02672 Underflow Underflow 2 60 Overflow 3 Overflow 50 χ^2 / ndf 20.79 / 19 χ^2 / ndf 11.06 / 15 55.98 ± 3.78 Constant Reconstructed Z 50 Constant $\textbf{60.38} \pm \textbf{4.30}$ 0.001172 ± 0.001378 Mean 40 Mean 0.002365 ± 0.001259 Sigma $\textbf{0.02575} \pm \textbf{0.00109}$ 0.02367 ± 0.00114 Sigma 40 mass 30 30 20 20 10 10 -0.25 -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2 0.25

-0 0.05

0.1 0.15 0.2 0.25 (fmass-rmass)/rmass (fmass-rmass)/rmass

-0.25 -0.2 -0.15 -0.1 -0.05

Conclusions

- Reconstructed Z mass width will most likely be useful in determining degree of alignment
- Real alignment effects should be much larger than random 1mm displacements
- Accurate alignment data (and its correct usage) is vital to data analysis

Future study

- Successful reconstruction using alignment data
- *Simulation* using the misaligned geometry
- Reconstruction with perfect and misaligned geometry
- Simulate corrections from alignment sensors (some uncertainty)
- Find how close one can get to a perfect measurement

Acknowledgments

- Steven Goldfarb
- Edward Moyse
- Matthias Schott
- Christoph Amelung
- University of Michigan
- National Science Foundation
- o CERN