TOTEM: Roman Pot Testing

Advisers: Gennaro Ruggiero and Hubert Niewiadomski

Goals of TOTEM

To gain a better understanding of diffractive physics at very high pseudo-rapidity.

P

- To determine experimentally the scattering cross-section of protons
- To begin to understand the nature of pomerons.

Roman Pots

 Placed directly in the beam pipe. 110g beam

- ~1 µrad deflection with a dist to IP of ~1000 m gives us 1 mm
- We can physically get detectors to be about 1 mm of the beam.

The Problems

- Large Dead Zones
- Radiation Hardness (i.e. ability to withstand large does of radiation and still function)
- Effects of Temperature Change

Voltage Termination

- The bias voltage will generate current if not decreased gradually
- Electrically active imperfections along the edge generate current.
- The problem is typically solved by having very large "dead zones".

Current Termination

• Instead of having strips which reduce the voltage. We now have bands which take away the current.

Does it Work?

- Yes it does...
- Active edges 50 μm from edge

Different Designs...

Point	'w6a1 3rd BR [A]'	'w6a2 BR [A]'	'w6a2 2nd BR [A]'	'w6a3 BR [A]'	'w6b BR [A]'	'w8a1 BR [A]'	'w8a3 BR [A]'	'w8b BR [A]'	'w10a1 BR [A]'	'w10a3 BR [A]'	'w10b BR [A]'	
0	3.97e-09	4.052e-09	2.538e-09	8.661e-09	2.429e-08	-1.0043e-08	1.3925e-08	-3.239e-08	4.021e-09	-4.107e-08	-3.97e-09	
1	9.108e-09	7.745e-09	6.897e-09	1.3565e-08	4.815e-08	7.914e-09	1.708e-08	4.206e-08	7.68e-09	2.998e-08	2.305e-08	
2	4.264e-08	4.447e-08	2.983e-05	5.468e-08	3.93e-08	3.409e-08	4.962e-08	3.938e-08	3.101e-08	2.412e-08	2.958e-08	
3	5.099e-08	4.556e-08	3.806e-05	6.908e-08	4.464e-08	4.174e-08	8.191e-08	4.422e-08	3.464e-08	4.364e-08	3.495e-08	
4	5.717e-08	5.241e-08	3.018e-05	7.197e-08	4.993e-08	4.442e-08	1.2054e-07	5.03e-08	3.768e-08	5.591e-08	4.035e-08	
5	7.098e-08	5.58e-08	0.0002519	1.0205e-07	5.561e-08	4.715e-08	1.6352e-07	5.764e-08	4.133e-08	6.767e-08	4.544e-08	
6	8.173e-08	5.948e-08	4.3e-12	1.1985e-07	6.128e-08	5.003e-08	2.089e-07	6.581e-08	4.534e-08	7.728e-08	5.025e-08	
7	9.133e-08	6.373e-08	1.8e-12	1.3842e-07	6.683e-08	5.311e-08	2.682e-07	7.393e-08	4.854e-08	8.569e-08	5.459e-08	
8	9.843e-08	6.825e-08	2.5e-12	1.5677e-07	7.235e-08	5.628e-08	3.218e-07	8.257e-08	5.161 e-08	9.335e-08	5.879e-08	
9	1.0554e-07	7.327e-08	5.2e-12	1.7536e-07	7.811e-08	5.964e-08	3.785e-07	9.16e-08	5.36e-08	1.0068e-07	6.29e-08	
10	1.1569e-07	7.89e-08	5.3e-12	1.9446e-07	8.449e-08	6.333e-08	4.392e-07	1.0074e-07	5.503e-08	1.0807e-07	6.43e-08	
11	1.262e-07	8.509e-08	7.8e-12	2.139e-07	9.165e-08	6.727e-08	5.055e-07	1.0984e-07	5.883e-08	1.1544e-07	7.147e-08	
12	1.3544e-07	9.225e-08	8.4e-12	2.341e-07	1.0003e-07	7.161e-08	5.421e-07	1.1917e-07	5.952e-08	1.2357e-07	7.601e-08	
13	1.4455e-07	1.0059e-07	8.1e-12	2.554e-07	1.0968e-07	7.655e-08	6.512e-07	1.2863e-07	6.231e-08	1.3114e-07	8.058e-08	
14	1.5386e-07	1.1065e-07	8.6e-12	2.785e-07	1.2122e-07	8.245e-08	7.309e-07	1.386e-07	6.519e-08	1.3842e-07	8.577e-08	
15	1.634e-07	1.2265e-07	1.53e-11	3.038e-07	1.3529e-07	8.904e-08	8.149e-07	1.4935e-07	6.798e-08	1.4585e-07	9.153e-08	
16	1.7268e-07	1.3781e-07	9 <u>.4e</u> -12	3.321e-07	1.5189e-07	9.612e-08	9 <u>.053e-07</u>	1.5237e-07	7.092e-08	1.5339e-07	9.756e-08	
17	1.8134e-07	100	e f	3.618e-07	1.7052e-07	1.03826 7	1.0 pteres	1.7394e-07	.404e-08	1.5868e-07	1.0421e-07	
18	1.9242e-07	1 37e-0	,e-1	J.S.S07	16 N	🔺 11e 🛛	1.1 4e-09	1.86 98-1			Th. 10-6.	
19	2.037e-07	1 24e-0)e-12	0	2106-07	1. 85e 7	1.2 peruti	2.008-	80-80.	7539e	1.1 Be	
20	2.145e-07		e-11	.4-0	- J	1 16e	1.: 5e-06	-de-	.456.	3377e	1.2 26	
21												

In general the a2 detectors have the

for a given series. Then typically the a1 or b and lastly comes the a3.

The Data

Plasma Etched Detectors

- Shows little or no improvement
- This one is 2 order of magnitude worse than w6a1.

Radiation Hardness

- We now turn our attention to the radiation hardness of our detectors.
- To measure radiation hardness, we radiate our detectors with a specific fluence and then measure the effect

The Plan

- First we irradiated five detectors with difference fluences:
 - w6a1 (10¹³ p/cm²)
 - w6a2 (4.97x10¹³ p/cm²)
 - w6a3 (1.44x10¹³ p/cm²)
 - w8a3 (9.77x10¹⁴ p/cm²)
 - w10a1 (4.32x10¹⁵ p/cm²)
- Next, it was necessary to measure how the current changed.

Measurements

- Dramatic increase in the BR current (two to four orders of magnitude)
- Small decrease in the CTR current

Quantitative Connection

- As we can see from this graph, the current in the BR of the microchips increases as the fluence increases.
- Energy deposited by the radiation strikes in center increasing current in BR but having little effect near CTR.

Annealing

- To restore somewhat the crystal structure which was lost durring the radiation process, we can anneal the detectors and then let them cool.
- I annealed the radiated detectors for 4 minutes at 80° C.

The Results

w3a3	15.88%
w6a1	19.69%
w6a2	12.56%
w8a1	8.25%
w11a3	9.96%
w12a1	13.92%

- In this graph you can see that the annealing does decrease the current in the BR.
- This decrease ranges from 8% to 20% depending on the chip.

Totem cycling 2.7.2007

Analysis

 Nothing happened that couldn't be attributed to water condensation and dirty detectors

Summary

- My research shows that the TOTEM detectors will be able to fulfill their purpose.
- The edgeless planar detectors are very capable of terminating the current and thereby maintaining sensitivity within 50 microns of the edge.
- Furthermore, the detectors should age well (they only begin to show serious problems at a fluence of about 10¹⁵ p/cm²) provided the beam is not lost in their vicinity.
- Although annealing does help the detectors somewhat. It is not sufficient to counteract heavy radiation.
- It seems that rapid temperature fluctuations do not aversely affect the detectors.

Thanks

Dr. Gennaro Ruggiero

Mr. Hubert Niewiadomski

The University of Michigan
CERN Summer Students Program
The National Science Foundation
All of the Summer Students

NSF

Special Thanks To:

- Professor Jean Krisch
- Professor Hommer Neal
- Professor Steven Goldfarb
- Mr. Jeremy Herr

at I've Done Here

Made friends Traveled around Europe Got in a Polish newsletter Sleep on a bench and got Went to Mass with the Pow Danced in a Salsa Ate brain Had a BLAST!!!

ttacked" by a Swiss Animal Family of Liechtenstein