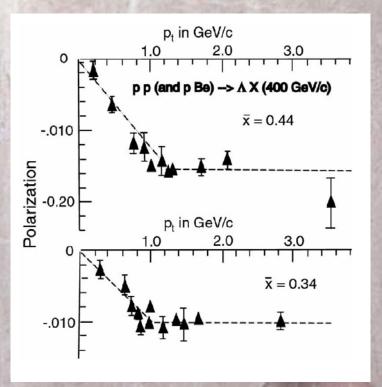
Preparations for Λ_b Polarization Measurements and Higgs Searches at ATLAS

Thomas Fai University of Michigan

Advisors: Homer Neal, Eduard De La Cruz Burelo, Natasha Panikashvili


Outline

Background on Λ_b polarization
 Preparations for LHC measurements
 Extraction of α_bP product from DØ data
 Separation of α_b and P

• Angular correlations in Higgs decay at generation level

Motivation

• Mysterious Λ^0 polarization plateau • Studying $\Lambda_{\rm b}$ will provide insight • Expect 75,000 of $\Lambda_{\rm h}$ $\overline{\Lambda}_{h}$ at LHC • Need parity-violating $\alpha_{\rm b}$ to measure polarization Initial estimate from **Tevatron data**

Λ_b Properties

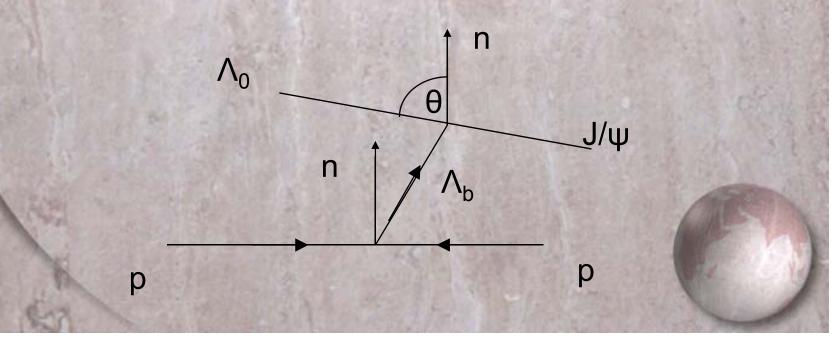
μ-

J/ψ Λ

π-

p

μ+


Baryon (udb)
Mass: 5624 MeV
Targeted decay channel in inclusive Λ_b production:

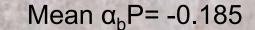
$$p + p \rightarrow \Lambda_{\rm b} + X$$

where $\Lambda_b \rightarrow J/\psi (\mu^+\mu^-) \Lambda^0 (\rho \pi^-)$

Λ_{b} Polarization

• Spin 1/2 • P = $(N_{up}-N_{down})/(N_{up}+N_{down})$ • $\alpha_b = \Lambda_b$ asymmetry parameter • PDF: w(cos θ)=1/2*(1+ α_b Pcos θ)

Toy Monte Carlo


• Generation, reconstruction directly from angular distribution

Generation--one experiment with $\alpha_b P$ = -0.183

Reconstruction--1000 experiments of 100 events

Entries 1000 Mean -0.1853 RMS 0.1777

costheta Entrine 10000 -0.07043 Mean 160 0.5711 140 120 100 80 60 40 20 -0.5 0.5 costheta

alphaP

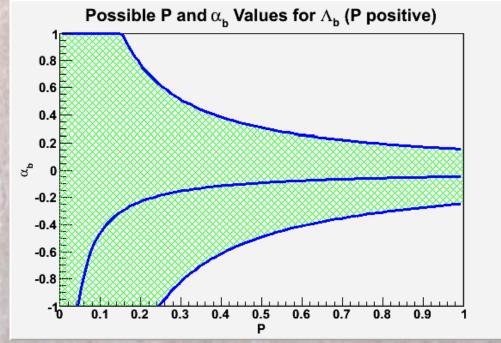
Mean error= 0.17

Maximum Likelihood Fit

• Find parameters that make the data most likely with the following PDF

 $w = f_{sig} S + f_{bkgd} B$ Acc*S_{mass}*S_{angle}

B_{mass}*B_{angle}


(Determined empirically)

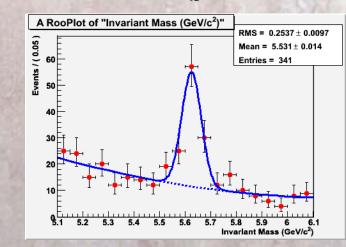
(From reconstruction level Monte Carlo, no polarization)

Gauss(μ, σ) Angular distribution

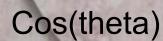
Measurement of $\alpha_b P$ from DØ data

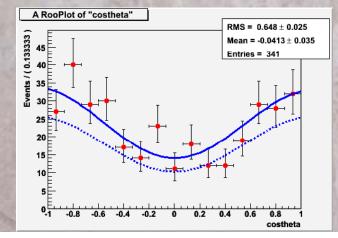
• 80 signal events • $\alpha_b P = -0.046$ ± 0.2

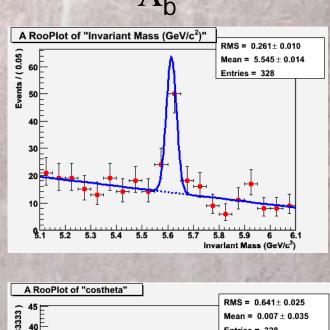
Fit includes acceptance, background, mass information

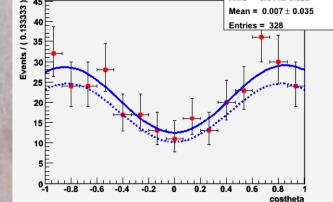

Addition of $\overline{\Lambda}_{b}$ Events

• 55 signal events • By CP conservation, $w(\cos \theta)=1/2^*(1-\alpha_b P \cos \theta)$ • $\alpha_b P=-0.054 \pm 0.26$

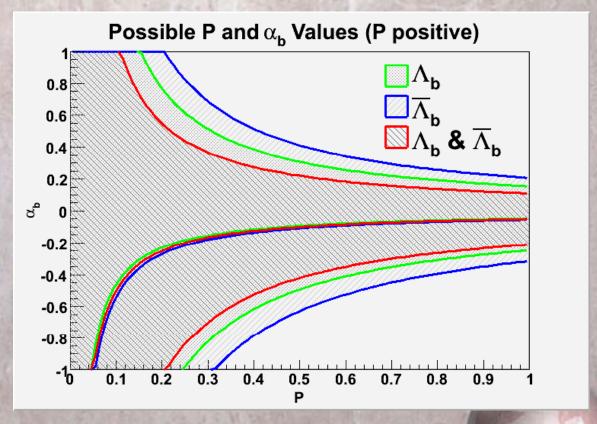

Expected error for combined sample? $\sigma_M = \sigma/Sqrt(N) \implies Error \approx 0.16$


Simultaneous Fit Results


 Λ_{b}

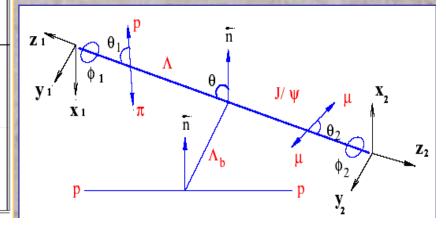


Mass

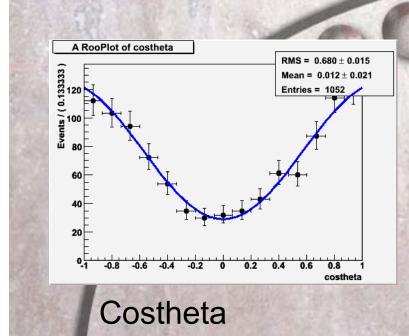


Updated Measurement

 Around 135 signal events
 α_bP= -0.05 ± 0.16
 Narrowed possible parameter space

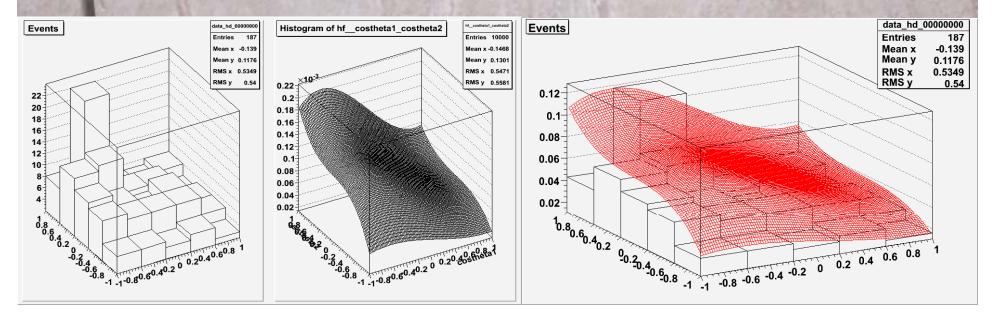

 $\Xi_{\rm b}$ discovery!

Attempt to increase data sample


Full Angular Distribution

$$w(\Omega, \Omega_1, \Omega_2) = \frac{1}{(4\pi)^3} \sum_{i=0}^{i=19} f_{1i} f_{2i}(P_b, \alpha_\Lambda) F_i(\theta, \theta_1, \theta_2, \phi_1, \phi_2)$$

Integrating over 4 angles leaves only the first 2 terms. Integrating over 2 angles leaves 8 terms.


i	f_{1i}	f_{2i}	F_i
0	1	1	1
1	α_b	P_b	$\cos \theta$
2	$2r_1 - \alpha_b$	α_{Λ}	$\cos \theta_1$
3	$2r_0 - 1$	$P_b \alpha_\Lambda$	$\cos\theta\cos\theta_1$
4	$\frac{1}{2} - \frac{3}{2}r_0$	1	$d_{00}^{2}(\theta_{2})$
5	$\frac{1}{2}\alpha_b - \frac{3}{2}r_1$	P_b	$d_{00}^2(\theta_2)\cos\theta$
6	$-\frac{1}{2}(lpha_b+r_1)$	α_{Λ}	$d_{00}^2(\theta_2)\cos\theta_1$
7	$-\frac{1}{2}(1+r_0)$	$P_b \alpha_\Lambda$	$d_{00}^2(\theta_2)\cos\theta\cos\theta_1$
8	$-3Re(a_{+}a_{-}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos\phi_1$
9	$3Im(a_{+}a_{-}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\sin\phi_1$
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos(\phi_1+2\phi_2)$
11	$\frac{3}{2}Im(b_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\sin\theta_1\sin^2\theta_2\sin(\phi_1+2\phi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\phi_2$
13	$\frac{3}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$
14	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P_b \alpha_\Lambda$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$
16	$\frac{3}{\sqrt{2}}Re(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P_b	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$
17	$-\frac{3}{\sqrt{2}}Im(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P_b	$\sin\theta\sin\theta_2\cos\theta_2\sin\phi_2$
18	$\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
19	$-\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$

acceptance

Modeling Acceptance, Background

Costheta1 vs. Costheta2 background

α_b Measurement for Λ_b Particles

 Allows separation of α_b and P
 Generation, reconstruction level simulations

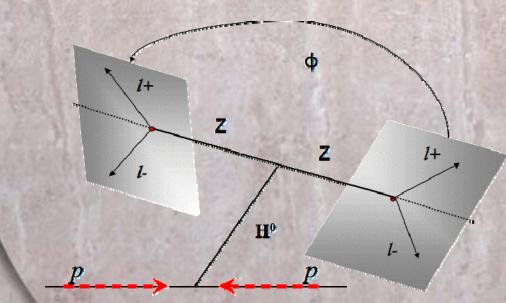
FCN=606.988 FROM MIGRAD STATUS=CONVERGED 643 CALLS 644 TOT STRATEGY= 1 ERROR MATRIX UNCERTAI EDM=6.56488e-07 EXT PARAMETER STEP FIRST VALUE ERROR SIZE DERIVATIVE NAME 1 alpha 2.10480e-01 5.94381e-01 -1.33466e-03 1.74232e-03 rЙ 8.99854e-05 8.26958e-01 2.18758e-01 5.55147e-04 r1 -Z.94767e-01 3.73348e-01 -8.45112e-04 -2.75016e-03 P -2.95065e-01 4.93915e-01 -3.63972e-04 -5.09475e-04 massback1 -3.21047e-01 3.03302e-02 1.01166e-06 2.48676e+01 massback2 2.61422e-02 4.74194e-03 -1.63503e-07 1.46884e+02 7 mean 5.62014e+00 7.07695e-03 -1.90862e-05 3.27350e-02 8 siqma 4.26638e-02 8.76201e-03 6.91147e-06 -3.31988e-02 9 fsig 2.53023e-01 4.16473e-02 -2.43718e-04 5.03839e-03 cosback_1 -4.42462e-01 2.16851e-01 -2.50628e-06 -1.00152e-01 10 cosback_2 2.35268e+00 1.65720e+00 -3.37679e-06 2.46324e-02 11 12 cos1back_1 _4.38844e_01 1.36490e-01 -1.88681e-06 -3.05070e-01 cos1back_2 2.14712e-01 13 3.88050e-03 8.97575e-07 -1.49727e-01 cos2back_1 2.82300e-01 1.09913e-01 2.84376e-06 -2.31911e-01 14 cos2back_2 4.23126e-06 -8.57189e-02 15 -1.96547e-01 1.99499e-01 ERR DEF= 0.5

EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 15 ERR DEF=0.5 ELEMENTS ABOVE DIAGONAL ARE NOT PRINTED.

GNU nano 1.2.4

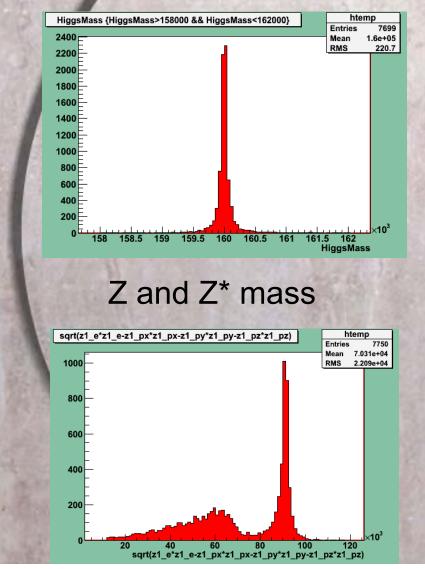
IGRAD MINIMIZATION HAS CONVERGED.

Summary of Results

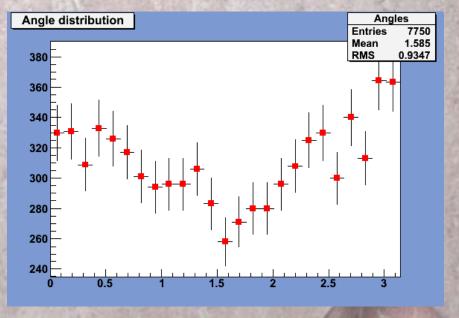

First measurement of separated α_b and P
 Developed a framework for future analysis

Large errors on measurements
Better to keep particles, antiparticles apart

Differences between Λ_b and Λ_b event numbers, mass peaks?
 Can we include Λ_b sample in the α_b measurement?


Correlation Between Final State Angles in Higgs Decay

 $H^{0} \rightarrow Z (I^{+}I^{-}) Z^{*} (I^{+}I^{-})$


 Debate over whether one should exist
 Check at generation level

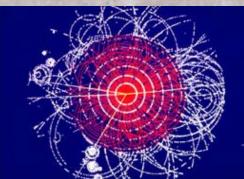
Higgs mass

Higgs plots

Angles between decay planes

Clear correlation in this version of Pythia!

Higgs Summary


© 1995 CERN

 Found angular correlation at generation level in H to 4I channel

 Possible use for background rejection, measurement of Higgs spin

 Extensive Monte Carlo simulations, analysis of Pythia versions remains

• Experience with Λ_{b} gives us an edge

Sardinia! woo!

Thank you

Homer Neal
Eduard De La Cruz Burelo
Natasha Panikashvili

Jean Krisch, Jeremy Herr, Steven Goldfarb
REU program
CERN