CP-violation and mixing in charmed mesons at Belle

Karina Arinstein

Budker Institute of Nuclear Physics Novosibirsk, Russia

17 July 2012

Rencontres du Vietnam Beyond The Standard Model of Particle Physics

Karina Arinstein

Outline:

- Introduction
- Belle detector
- CPV mechanisms in *D*-mesons
- Direct CPV

•
$$A_{CP}(D^0 \to K^+ K^-, \pi^+ \pi^-)$$

• $A_{CP}(D^{\pm} \to K^0_S \pi^{\pm})$

• Mixing

•
$$x, y$$
 in $D^0 \to K^0_S \pi^+ \pi^-$

- y_{CP} , A_{Γ} in $D^0 \xrightarrow{\sim} K^+ K^-, \pi^+ \pi^-$
- Summary

Direct CPV ($\Delta C = 1$):

decay amplitudes for D^0 -, D^+ -decays and their flavor conjugated processes differ $(|A_f|\neq |\bar{A}_{\bar{f}}|)$

SM predictions: $O(10^{-3})$ in singly Cabibbo suppressed decays (SCS) smaller in Cabibbo favored and doubly Cabibbo suppressed (DCS) (A. Petrov, arXiv:1101.3822v1; F. Buccella *et al.*,PLB 302, 319 (1993))

Indirect CPV:

- in mixing ($\Delta C = 2$): rates $D^0 \to \overline{D}^0$ and $\overline{D}^0 \to D^0$ differ
- in interference between mixing and direct decay amplitudes.

SM predictions: $O(10^{-4}-10^{-5})$ (I. Bigi et al., JHEP 1106, 089 (2011))

Direct CPV depends on the final state, indirect CPV is universal for all D-mixing processes.

Karina Arinstein

The Belle detector (KEKB collider), KEK, Tsukuba, Japan:

- World luminosity record: $L\simeq 2.1\times 10^{34}~{\rm cm}^{-2}{\rm s}^{-1}$
- \bullet Data taking finished in 2010 \Rightarrow Upgrade to Belle II
- Total integrated luminosity: over 1 ab⁻¹
 - 711 fb⁻¹ $\Upsilon(4S)$ (772 × 10⁶ $B\overline{B}$ -pairs)
 - 121 fb⁻¹ $\Upsilon(5S)$
 - $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$ scan

 $A_{CP}(D^0 \to K^+ K^-, \pi^+ \pi^-)$ with 977 fb⁻¹

Time-integrated CP-asymmetry for final CP-eigenstate f:

$$a^{f}_{CP} = \frac{\Gamma(D^{0} \rightarrow f) - \Gamma(\overline{D}^{0} \rightarrow f)}{\Gamma(D^{0} \rightarrow f) + \Gamma(\overline{D}^{0} \rightarrow f)}$$

Recent ΔA_{CP} measurements

$$\Delta A_{CP} = A_{CP}^{KK} - A_{CP}^{\pi\pi}$$

 $\begin{array}{ll} (-0.82\pm0.21\pm0.11)\% \mbox{ (LHCb 0.62 fb}^{-1}, \mbox{ PRL 108, 111602 (2012))} & 3.5\sigma \\ (-0.62\pm0.21\pm0.10)\% \mbox{ (CDF 9.7 fb}^{-1}, \mbox{ arXiv:1207.2158v1)} & 2.7\sigma \end{array}$

SM or NP?

Theoretical predictions for SM contributions to this value can reach up to a few per mille. On the other hand, New Physics can also contribute to ΔA_{CP} .

 \Rightarrow Important to measure A(KK) and $A(\pi\pi)$ with high precision!

Karina Arinstein

The method

$$A_{CP}^{KK} = \frac{\Gamma(D^0 \to KK) - \Gamma(\overline{D}^0 \to KK)}{\Gamma(D^0 \to KK) + \Gamma(\overline{D}^0 \to KK)}$$
, similarly for $A_{CP}^{\pi\pi}$

 $N^{rec} = N_{prodD^*} \cdot \mathcal{B}(D^* \to D^0 \pi_S) \cdot \mathcal{B}(D^0 \to KK) \cdot \varepsilon_{KK} \cdot \varepsilon_{\pi_S}$

For small asymmetries: $A^{rec} = A_{CP}^{KK} + A_{FB}^{D^*} + A_{CP}^{D^0\pi_S} + A_{\varepsilon}^{KK} + A_{\varepsilon}^{\pi_S}$

•
$$A_{CP}^{D^0\pi_S} = 0$$
 (strong decay)

•
$$A_{\varepsilon}^{KK} = 0$$
 (CP symmetric final state)

- $A_{\varepsilon}^{\pi_S}$: detector-induced asymmetry accounted for using control data samples $(D^0 \to K\pi)$. Important in other $A(D^0 \to f)$ measurements!
- $A_{FB}^{D^*}$: due to interference of virtual γ and Z_0 in $e^+e^- \rightarrow c\bar{c}$ and is a function of $cos(\theta^*)$, $A_{FB}^{D^*}(cos(\theta^*)) = -A_{FB}^{D^*}(-cos(\theta^*))$ ($\theta^* = D^*$ polar angle in CMS).

$$\Rightarrow A_{corr}^{rec} = A^{rec} - A_{\varepsilon}^{\pi_S}, \qquad A_{CP} = \frac{A_{corr}^{rec}(\cos(\theta^*)) + A_{corr}^{rec}(-\cos(\theta^*))}{2}$$
$$A_{corr}^{rec}(\cos(\theta^*)) = A_{CP}^{KK} + A_{FB}^{D^*}(\cos(\theta^*)) \qquad A_{FB} = \frac{A_{corr}^{rec}(\cos(\theta^*)) - A_{corr}^{rec}(-\cos(\theta^*))}{2}$$

Karina Arinstein

Charm CPV and mixing at Belle

Event selection criteria typical for $D^* \to D^0 \pi_S$, $D^0 \to hadrons$

- $D^{*+} \rightarrow D^0 \pi^+_S$, $D^{*-} \rightarrow \overline{D}{}^0 \pi^-_S$
- $p(D^*) > 2.5(3.1) \text{ GeV}/c$ for $\Upsilon(4S)/(5S)$ data
- $1.81 < M(D^0_{cand}) < 1.91 \text{ GeV}/c^2$
- $Q = M(\pi_S D_{cand}^0) M(D_{cand}^0) m(\pi_S) < 20 \text{ MeV}/c^2$
- $D^0 \rightarrow$ charged tracks, K/π separation: $\mathcal{L}(K) \Leftarrow$ CDC, ACC, TOF
- D^0 vertex fit
- D^* IP constrained fit

	KK	$\pi\pi$	
N_{ev}	282×10^3	123×10^3	

Results

Belle (976 fb⁻¹)

 $A_{CP}^{KK} \ = \ (-0.32 \pm 0.21 \pm 0.09)\%$

 $A_{CP}^{\pi\pi} ~=~ (+0.55\pm0.36\pm0.09)\%$

Experiment	ΔA_{CP} (%)	σ from zero	Reference
Belle, 540 fb $^{-1}$	$-0.86 \pm 0.60 \pm 0.07$	1.4	PLB 670, 190 (2008)
LHCb, 0.62 fb^{-1}	$-0.82 \pm 0.21 \pm 0.11$	3.5	PRL 108, 111602 (2012)
CDF, 9.7 fb^{-1}	$-0.62 \pm 0.21 \pm 0.10$	2.7	arXiv:1207.2158v1
Belle, 976 fb $^{-1}$	$-0.87 \pm 0.41 \pm 0.06$	2.1	

The results are in agreement with our previous measurement and with recent measurements from LHCb and CDF.

Source of syst.	A_{CP}^{KK} (%)	$A_{CP}^{\pi\pi}$ (%)	ΔA_{CP} (%)
Signal counting	0.055	0.023	0.037
Slow π eff. corr.	0.065	0.067	0.014
A_{CP} extraction	0.006	0.050	0.051
Quadrature sum	0.085	0.087	0.064

 A_{CP} in $D^{\pm} \to K_S^0 \pi^{\pm}$

$$A_{CP}(D \to K^0_S \pi) = \frac{\Gamma(D^+ \to K^0_S \pi^+) - \Gamma(D^- \to K^0_S \pi^-)}{\Gamma(D^+ \to K^0_S \pi^+) + \Gamma(D^- \to K^0_S \pi^-)} = A_{CP}^{D^+} + A_{CP}^{\overline{K}_0}$$

- $A_{CP}^{D^+}$: CPV from D^+ decay
- $A_{CP}^{\overline{K}_0}$: CPV in K^0 system, $(-0.332 \pm 0.006)\%$ (J. Phys. G **37** 075021 (2010)). If measured $A_{CP}(D \to K_S^0 \pi)$ is significantly inconsistent with $A_{CP}^{\overline{K}_0}$, this could be an indication of NP.

$A_{rec}(D^+ \to K^0_S \pi^+) = A_{CP}(D \to K^0_S \pi) + A^{D^+}_{FB} + A^{\pi^+}_{\varepsilon} + A_D$

- $A_{FB}^{D^+}$: D^+ production asymmetry, odd function of $cos(\theta_{D^+}^{CMS})$
- $A_{\varepsilon}^{\pi^+}$: π^{\pm} detection asymmetry, depends on $p_{T\pi^+}^{lab}$, $cos(\theta_{\pi^+}^{lab})$, corrected for using control data samples $(D^+ \to K^- \pi^+ \pi^+, D^0 \to K^- \pi^+ \pi^0)$
- A_D : asymmetry due to difference in interaction of K^0 and \bar{K}^0 with detector material, depends on $p_{K_2^0}^{lab}$. Calculated according to PRD **84**, 111501 (2011).

$$\Rightarrow A_{rec}^{corr} = A_{CP}^{D^+ \to K_S^0 \pi^+} + A_{FB}^{D^+} \qquad A_{CP}^{D^+ \to K_S^0 \pi^+} = \frac{A_{rec}^{corr}(\cos\theta_D) + A_{rec}^{corr}(-\cos\theta_D)}{2} \\ A_{FB}^{D^+} = \frac{A_{rec}^{corr}(\cos\theta_D) - A_{rec}^{corr}(-\cos\theta_D)}{2}$$

Karina Arinstein

Charm CPV and mixing at Belle

Quy Nhon, 17 July 2012

Results

$$\begin{split} N_{sign}(D^+ + D^-) &= (1738 \pm 2) \times 10^3 \\ A_{CP}(D^+ \to K^0_S \pi^+) &= \\ (-0.363 \pm 0.094 \pm 0.067)\% \\ \text{consistent with } A_{CP}^{K^0_S}, \\ \text{PRL 109, 021601 (2012)} \end{split}$$

 $A_{CP}^{D^+} = (-0.018 \pm 0.094 \pm 0.068)\%$ consistent with zero.

Most precise measurement of $A_{CP}(D^+ \rightarrow K^0_S \pi^+)$ to date.

Experiment	$A_{CP}(D^+ \to K^0_S \pi^+)$, %	Reference
FOCUS	$-1.6 \pm 1.5 \pm 0.9$	PRL 88, 041602 (2002)
CLEO	$-1.3 \pm 0.7 \pm 0.3$	PR D 81, 052013 (2010)
BaBar	$-0.44 \pm 0.13 \pm 0.10$	PR D 83, 071103 (2011)
New world ave.	-0.41 ± 0.09	

Mixing formalism:

Hamiltonian eigenstates of D^0 - \overline{D}^0 system: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle, p^2 + q^2 = 1$ (can be *CP*-eigenstate if $\frac{q}{n} = 1$, i.e. no CPV) Time evolution: $|D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}(0)\rangle,$ D^0 $e_{1,2}(t) = e^{-i(m_{1,2}-\frac{i}{2}\Gamma_{1,2})t}$ $\Rightarrow \frac{dN(D^0 \rightarrow f)}{dt} = |A(D^0(t) \rightarrow f)|^2 =$ $= e^{-\Gamma t} |A_f - \frac{q}{n} \frac{y+ix}{2} \Gamma t \bar{A}_f|^2$ $x = \frac{m_1 - m_2}{\Gamma}, y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}, \Gamma = \frac{\Gamma_1 + \Gamma_2}{2\Gamma}$

$D^{0} \xrightarrow[\overline{u}]{} \overline{d}, \overline{s}, \overline{b} \xrightarrow[\overline{v}]{} \overline{c} \xrightarrow{\overline{c}} \overline{c}$

SM predictions for x, y:

quark box diagrams $\sim O(10^{-7} - 10^{-6})$, long distance effects $\sim O(10^{-3} - 10^{-2})$.

New Physics can provide additional box diagrams.

Karina Arinstein

Charm CPV and mixing at Belle

Quy Nhon, 17 July 2012

$D^0 \rightarrow K_S^0 \pi^+ \pi^- t$ -dependent Dalitz analysis:

3-body charge self conjugated modes: x, ybe extracted using *t*-dependent Dalitz can analysis. $D^0 \to K_S^0 \pi^+ \pi^-$: $A_f = A(m_-^2, m_+^2)$, + $m_{-}^2 = m^2 (K_S^0 \pi^-), \ m_{+}^2 = m^2 (K_S^0 \pi^+)$ 2.5 2 Assuming no CPV $(\bar{A}(m_{-}^2, m_{+}^2) = A(m_{+}^2, m_{-}^2))$ 1.5 q/p = 1), decay rate(time): $|M(m_{\perp}^2, m_{\perp}^2, t)|^2 =$ 0.5 $(|A_1|^2 e^{-y\Gamma t} + |A_2|^2 e^{y\Gamma t} +$ $M^2_ 2Re(A_1A_2^*)cos(x\Gamma t) + 2Im(A_1A_2^*)sin(x\Gamma t))e^{-\Gamma t}$ *t*-integrated Dalitz plot (DP) $D^0 \rightarrow K^0_S \pi^+ \pi^-$ distribution. $A_{1,2} = \frac{1}{\sqrt{2}} (A_f + \bar{A}_f)$

Similarly for $|\overline{M}(m_+^2, m_-^2, t)|^2$...

$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ event selection:

Unbinned likelihood function:

$$2ln\mathcal{L} = 2\sum_{i=1}^{n} ln(f_{sig}p_{sig}(m_{-i}^{2}, m_{+i}^{2}, t_{i}) + f_{rnd}p_{rnd}(m_{-i}^{2}, m_{+i}^{2}, t_{i}) + f_{cmb}p_{cmb}(m_{-i}^{2}, m_{+i}^{2}, t_{i}))$$

$$p_{sig}(m_{-i}^{2}, m_{+i}^{2}, t_{i}) = \frac{\int_{0}^{\infty} dt' R_{sig}(t_{i} - t') |M(m_{-i}^{2}, m_{+i}^{2}, t')|^{2} \varepsilon(m_{-i}^{2}, m_{+i}^{2})}{\int_{0}^{\infty} dt \int_{D} dm_{-}^{2} dm_{+}^{2} |M(m_{-}^{2}, m_{+i}^{2}, t)|^{2} \varepsilon(m_{-}^{2}, m_{+i}^{2})}, f_{cm} = (1 - f_{si} - f_{rn})$$

- f_x determined by 2D M-Q fit,
- DP efficiency functions $\varepsilon(m_{-}^2, m_{+}^2)$ estimated from MC sim., parameterized by 3rd order polynomial,
- background shape estimated from M-Q sidebands,
- $\bullet\,$ signal DP distribution convolved with resolution function R_{sig}

Dalitz model (best fit description)

$$A(m_{-}^2, m_{+}^2) = B_{r \neq S} + K_{\pi\pi, S} + L_{K\pi, S}$$

- $\pi^+\pi^-$ S-wave: K-matrix model
- $K\pi$ S-wave: LASS model

Resonances: $K^*(892)$, $K^*_0(1430)^-$, $K^*_2(1430)^-$, $K^*(1410)^-$, $K^*(1680)^-$, $K^*(892)^+$, $K^*_0(1430)^+$, $K^*_2(1430)^+$, $K^*(1410)^+$, $K^*(1680)^+$, $\rho(770)$ (fixed), $\omega(782)$, $f_2(1270)$, $\rho(1450)$, $K_s\pi$ and $\pi\pi$ S-waves.

Karina Arinstein

Charm CPV and mixing at Belle

Fit results (preliminary):

	fit results			95% C.L. int.
				(stat. only)
×(%)	0.56 ± 0.19	+0.03	+0.06	(0.09,1.03)
(0/)	0.20 1.0.15	-0.09 + 0.04	-0.09 + 0.03	
y(%)	0.30 ± 0.15	-0.05	-0.06	(-0.08,0.08)
Uncertainties: stat., experimental and model syst.				
$\tau~=~410.3\pm0.45$ fs, consistent with				
$\tau_{PDG} = 410.1 \pm 1.5 \text{ fs}$				

Karina Arinstein

Charm CPV and mixing at Belle

Quy Nhon, 17 July 2012

	x(%)			y(%)		
Belle 540 fb $^{-1}$	0.80 ± 0.29	+0.09 -0.07	+0.10 -0.14	0.33 ± 0.24	+0.08 -0.12	+0.06 -0.08
PRL 99, 131803 (2007)		0.01	0.14		0.12	0.00
BaBar 469 fb $^{-1}$	0.16 ± 0.23	5 ± 0.12	± 0.08	0.57 ± 0.20	0 ± 0.13	± 0.07
PRL 105, 081803 (2010)						
Belle 920 fb $^{-1}$	0.56 ± 0.19	+0.03	+0.06	0.30 ± 0.15	+0.04	+0.03
Delice 920 IB	0.00 ± 0.10	-0.09	-0.09	0.00 ± 0.10	-0.05	-0.06

Most precise determination of x, y to date!

Mixing parameter y_{CP}

- $y_{CP} = \frac{\tau_{K\pi}}{\tau_{CP}} 1$, $CP : KK, \pi\pi$
 - CP conservation: $y_{CP} = y$
 - CP violation: $y_{CP} = y \cos \phi \frac{1}{2} A_M x \sin \phi$, $|\frac{q}{p}|^2 = 1 + A_M$, $\phi = \arg(\frac{q}{p})$

CP asymmetry in lifetimes

$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to CP) - \tau(D^0 \to CP)}{\tau(\overline{D}^0 \to CP) + \tau(D^0 \to CP)}$$

- CP conservation: $A_{\Gamma} = 0$
- CP violation: $A_{\Gamma} = \frac{1}{2}A_M y cos\phi x sin\phi$

Belle 2007 measurement (540 fb^{-1}):

• $y_{CP} = (1.31 \pm 0.32 \pm 0.25)\%$

 \Rightarrow first evidence for mixing (3.2 σ)

• $A_{\Gamma} = (0.01 \pm 0.30 \pm 0.15)\%$

$$f(t) = \frac{N}{\tau} \int e^{-t'/\tau} R(t - t') dt' + B(t)$$

- N: normalization (free fit parameter)
- τ : lifetime (free fit parameter)
- R(t-t'): signal resolution function
- B(t): signal-window background estimated from M-Q sidebands
- Large disagreement between data and MC: up to 5% of lifetime ⇒ Measurement must be performed in bins of cos(θ*) to reduce systematics + add cut |cos(θ*) < 0.9| (1% signal lost). θ* polar angle of D⁰ in CMS.

Resolution function constructed for each $cos(\theta^*)$ bin by fitting $(t - t_{gen})/\sigma_t$.

Fitted lifetime distributions

Karina Arinstein

Charm CPV and mixing at Belle

Quy Nhon, 17 July 2012

source	Δy_{CP} (%)	ΔA_{Γ} (%)
acceptance	0.050	0.044
SVD misalignments	0.060	0.041
mass window position	0.007	0.009
background	0.059	0.050
resolution function	0.030	0.002
binning	0.021	0.010
sum in quadrature	0.11	0.08

 $y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%$ $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$

- y_{CP} : 4.5 σ away from zero, stat. + syst. error combined (4.5 σ , stat. error only)
- A_{Γ} : consistent with zero

Summary

Big data sample and good detector performance allow us to measure A_{CP} and mixing in different decay modes using different techniques.

•
$$A_{CP}^{KR} = (-0.32 \pm 0.21 \pm 0.09)\%$$

 $A_{CP}^{\pi\pi} = (+0.55 \pm 0.36 \pm 0.09)\%$
 $\Delta A_{CP} = (-0.87 \pm 0.41 \pm 0.06)\%$ (agreement with LHCb and CDF)
• $A_{CP}(D^+ \to K_S^0 \pi^+) = (-0.363 \pm 0.094 \pm 0.067)\%$ is consistent with $A_{CP}^{K_S^0} = A_{CP}^{D^+} = (-0.018 \pm 0.094 \pm 0.068)\%$ consistent with zero.
Most precise measurement to date.

• Mixing in
$$D^0 \to K_S^0 \pi^+ \pi^-$$
:
 $x = (0.56 \pm 0.19 \begin{array}{c} +0.03 \\ -0.09 \end{array} \begin{array}{c} +0.06 \\ -0.09 \end{array})\% y = (0.30 \pm 0.15 \begin{array}{c} +0.04 \\ -0.05 \end{array}$

Most precise measurement to date.

• Mixing in
$$D^0 \rightarrow KK, \pi\pi$$
:
 $y_{CP} = (1.11 \pm 0.22 \pm 0.11)\% \rightarrow \text{confirmed evidence for mixing in } D \text{ decays}$
 $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08) \rightarrow \text{consistent with zero}$

We hope for more experimental opportunities with the upgraded Belle II detector.

Thank you.

Karina Arinstein	Charm CPV and mixing at Belle	Quy Nhon, 17 July 2012
------------------	-------------------------------	------------------------

+0.03

BACKUP

|Event selection, $D^+ o K^0_S \pi^+$

•
$$D^+ \to K^0_S \pi^+$$
, $K^0_S \to \pi^+ \pi^-$

- $p(D^+)>2.5(3.0)~{\rm GeV}/c$ for $\Upsilon(4S/5S)$ data
- 1.795 < $M(K^0_S\pi^+)$ < 1.955 ${\rm GeV}/c^2$
- $1.855 < M(\pi^+\pi^-) < 1.885 \text{ GeV}/c^2$
- K^0_S vertex fit
- D^+ IP constrained fit

$$N_{sign}(D^+ + D^-) = (1738 \pm 2) \times 10^3$$

Resonance	Amplitude	Phase (deg)		
$K^{*}(892)^{-}$	1.593 ± 0.005	131.6 ± 0.2		
$K_0^*(1430)^-$	2.071 ± 0.025	-196.1 ± 2.2		
$K_2^*(1430)^-$	1.136 ± 0.011	-41.2 ± 0.6		
$K^{*}(1410)^{-}$	0.503 ± 0.022	83.5 ± 2.3		
$K^*(1680)^-$	1.676 ± 0.157	-85.5 ± 3.5		
$K^{*}(892)^{+}$	0.140 ± 0.002	-41.5 ± 0.7		
$K_0^*(1430)^+$	0.174 ± 0.011	-104.8 ± 3.8		
$K_2^*(1430)^+$	0.082 ± 0.009	-34.8 ± 6.8		
$K^{*}(1410)^{+}$	0.252 ± 0.017	-141.5 ± 4.0		
$K^{*}(1680)^{+}$	1.409 ± 0.117	89.9 ± 5.0		
$\rho(770)$	1 (fixed)	0 (fixed)	$K\pi$ S-wave paramet	ters
$\omega(782)$	0.0369 ± 0.0005	115.2 ± 0.7	$M(MeV/c^2)$	1462.5 ± 2.4
$f_2(1270)$	1.284 ± 0.019	-31.4 ± 0.9	$\Gamma(MeV/c^2)$	266.1 ± 4.6
$\rho(1450)$	0.556 ± 0.052	84.8 ± 5.0	F	0.4270 ± 0.0309
$\pi\pi$ S-wave			$\phi_F(rad)$	0.261 ± 0.022
β_1	4.26 ± 0.03	163.0 ± 0.5	R	1(fixed)
β_2	10.82 ± 0.04	15.8 ± 0.4	$\phi_R(rad)$	2.528 ± 0.056
β_3	38.2 ± 0.5	1.8 ± 1.0	$a(GeV/c^{-1})$	0.177 ± 0.006
β_4	14.4 ± 0.2	-10.1 ± 0.8	$r(GeV/c^{-1})$	-19.9 ± 0.8
f_{11}^{prod}	12.60 ± 0.07	-161.7 ± 0.5	$K^*(892)$ parameters	5
find	14.0 ± 0.2	-175.9 ± 0.7	$M_{K^{\star}(892)}MeV/c^2$	893.69 ± 0.05
f_{13}^{prod}	9.6 ± 0.5	-120.9 ± 2.5	$\Gamma_{K^{*}(892)}MeV/c^{2}$	47.63 ± 0.10