

Standard Model Higgs Boson Searches at ATLAS

Jana Kraus University of Bonn On behalf of the ATLAS Collaboration

Beyond The Standard Model of Particle Physics, Quy Nhon, Vietnam, 15th - 21th July 2012

Let's find out the story behind it all...

Higgs in the Standard Model

Higgs mechanism explains electroweak symmetry breaking in the Standard Model

Fermions and vector bosons acquire
 masses by coupling to the Higgs field

Physical consequence: existence of a scalar Higgs boson

* All particles predicted by the Standard Model have been observed, except for the Higgs boson Constraints on Higgs mass: previous collider experiments (**LEP, Tevatron**), electroweak precision measurements (indirect), theory constraints

SM Higgs production at the LHC

Higgs decays

- # 5 decay modes studied:
 - High masses: ZZ, WW
 - Low masses: bb, TT, YY,
 WW, ZZ

* low mass especially challenging due to huge backgrounds (esp. bb, TT)

- * best mass resolution (1-2%):
 - $\bullet \quad H \rightarrow \gamma \gamma, H \rightarrow Z Z \rightarrow IIII$

ATLAS data taking

Current ATLAS results

* Searches performed in 12 channels in the range 110 GeV < m_H < 600 GeV Updated with 2012 data					
Higgs decay	Subsequent decay	Mass range [GeV]	L [fb ⁻¹]	Publication (arXiv)	
Н→үү		110-150	4.8 + 5.9	1202.1414	
H→ZZ	III'I'	110-600	4.8 + 5.8	1202.1415	
	ΙΙνν	200-600	4.7	1205.6744	
	llqq	200-600	4.7	1206.2443	
H→WW	l∨qq	300-600	4.7	1206.6074	
	ΙνΙν	110-600	4.7	1206.0756	
Η→ττ	ll4∨		4.7		
	$I\tau_{had}3v$	110-150	4.7	1206.5971	
	$\tau_{had}\tau_{had}2\nu$		4.7		
VH→bb	lvbb		4.7		
	llbb	110-130	4.7	1207.0210	
	vvbb		4.6		

Outline

High mass searches

9

SM Higgs I 2012 9th, |n|

High mass searches: Results

Outline

H→WW→IvIv

- mainly WW, ttbar, W+jets
- shape from simulation, normalized/validated in data control regions (e.g. inverted b-tag veto, high m_{ll} region)

* Characteristics

- High BR, but low mass resolution
- Two opposite sign electrons/muons & ET^{miss}
- * analysis categories: 0, I and 2 jets (VBF)
- angular correlation
 leptons (small Δφ_{II} and
 m_{II} if from spin-0 Higgs)
 used to discriminate
 against WW

H→WW→IvIv

J. Kraus, BSM Quy Nhon

VH→bb

* Characteristics

Three decay channels studied:

ZH→llbb ZH→∪∪bb WH→l∪bb

- exactly 2 b-tagged jets
- analysis categories: different
 PT^{W/Z}, ET^{miss} bins

Backgrounds

W+jet, Z+jets, top, dibosons, multijets derived from data control regions

VH→bb

Η→ττ

*** Characteristics**

 Three decay channels studied:

 $H \rightarrow \tau \tau \rightarrow II \cup \cup \cup \cup U$ $H \rightarrow \tau \tau \rightarrow I \tau_{had} \cup \cup \cup U$ $H \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} \cup \cup U$

analysis categories: 0, 1 jet (gg), 2 jet VH and VBF

Backgrounds

- * $Z \rightarrow \tau \tau$ (irreducible), estimated from $Z \rightarrow \mu \mu$ data, where μs are replaced by simulated τs and their decay products
- T/lepton fakes, data control regions

Η→ττ

Discriminating variable

 invariant mass m_{TT} from T decay products and E_T^{miss} (collinear approximation/ Missing mass Calculator)

- Result
- No observable excess for m_H between 110-150 GeV
- Observed limit: 2.9-11.7xσ_{SM}
 Expected limit: 3.4-8.2xσ_{SM}

Outline

LHC HIGGS XS WG 201

111

SM

 $I = e, \mu$ $v = v_e, v_\mu, v_\tau$

q = udscb

400 500

M_H [GeV]

Η→γγ

further details in talk of *Ruggero Turra*

Date: 2012-05-11 00:03:43 CES

* Characteristics

- Two isolated photons,
 E_{T1} >40 GeV, E_{T2} > 30 GeV
- I0 analysis categories: converted/ unconverted, detector region, p_T thrust, 2 jets (VBF)
- crucial aspects: good mass resolution, good jet rejection

pT thrust: orthogonal component of total pT of the system with respect to thrust axis SM

July 19th, 2012

J. Kraus, BSM Quy Nhon

Backgrounds

- * γγ (irreducible, 3 orders of magnitude higher), jγ, jj
- validate composition in data control regions (inverted photon ID and isolation), true γγ ~75-80%

Η→γγ

Discriminating variable

- invariant mass m_{YY} , $m_{YY}^2 = 2 E_1 * E_2 * (1 - cos α)$
- * excellent mass resolution $\sigma = 1.6-3.1$ GeV,
 - good calorimeter energy measurement (scale uncertainty on signal yield ~0.3%)
 - identifying primary vertex via photon
 pointing (σ_Z ~ 1.5 cm), stable against pile
 up

Combined 2011+2012 dataset used (4.8+5.9 fb⁻¹)

Fit of m_{YY} spectrum in each category, combined signal (Crystal Ball plus wide Gaussian) and background (various analytic functions)

SM Higgs Boson Searches at ATLAS

July 19th, 2012

Η→γγ

Observed exclusion: 112 - 122.5 GeV, 132 - 141 GeV, expected: 110 - 139.5 GeV

Excess observed consistently in 2011/2012 data

Maximum excess observed at: $m_H = 126.5 \text{ GeV}$ Local significance (with ESS): 4.5σ Probability of background up fluctuation: 2×10^{-6} Expected significance from SM Higgs at $m_H = 126.5 \text{ GeV}$: 2.4σ Global significance including Look Elsewhere effect (LEE), probalility to observe
excess anywhere in mass range 110-150 GeV: 3.6σ

SM Higgs Boson Searches at ATLAS

July 19th, 2012

$H \rightarrow ZZ \rightarrow IIII$

further details in talk of *Giacomo* Artoni

Backgrounds

- ZZ (irreducible) from Monte Carlo simulation
- Z+jets, ttbar, measured and fitted in data control regions (inverted ID/isolation and impact parameter requirements for softest leptons)

Characteristics

- Small rate, but pure (S/B~I)
- Four isolated leptons, PT¹²³⁴ > 20, 15, 10, 7/6 GeV for e/μ
- analysis categories:
 lepton flavours
- crucial aspects: good mass resolution, reconstruction/ identification efficiency of leptons

. Kraus, BSM Quy Nhon

H→ZZ→IIII

23

* Discriminating variable

- invariant mass m_{III}
- * excellent mass resolution $\sigma =$ **1.8-2.5 GeV** (4µµ/4ee),
- very good e/μ reconstruction efficiency esp. in low pT region (μ reco ~97% for p_T>6 GeV, e reco ~98%, e ID ~95%), robust against pileup

$H \rightarrow ZZ \rightarrow IIII$

- * **Observed exclusion:** 131-162 GeV, 170-460 GeV, expected: 124-164 GeV, 176-500 GeV
- Excess observed consistently in 2011/2012 data

Maximum excess observed at: m _H =	125 GeV
Local significance:	3.4σ
Probability of background up fluctuation:	3 x 10 ⁻⁴
Expected significance from SM Higgs at $m_H = 125$ GeV	: 2.6 σ
Global significance (including LEE): 2.5 σ (in 110-141 GeV)	

Outline

*** High Higgs mass**

* Low Higgs mass, limited resolution

* Low Higgs mass, high resolution

Н→үү

H→ZZ→IIII

*** Combination**

Combined results: Exclusion limits

*** Excluded at 95% CL:** | 10-122.6 GeV, 129.7-558 GeV

- **Excluded at 99% CL:** 111.7-121.7 GeV, 130.7-523 GeV
- *** Expected exclusion at 95% CL (no signal):** 110-582 GeV

Combined results: Exclusion limits

*** Excluded at 95% CL:** 110-122.6 GeV, 129.7-558 GeV

- **Excluded at 99% CL:** 111.7-121.7 GeV, 130.7-523 GeV
- *** Expected exclusion at 95% CL (no signal):** 110-582 GeV

J. Kraus, BSM Quy Nhon

- Excellent consistency of data with background only hypothesis (less than 2σ) over full mass spectrum
- *** excess in one region**

(less than 2σ) over full mass spectrum

*** excess in one region**

Kraus, BSM Quy Nhon

 Excellent consistency of data with background only hypothesis (less than 2σ) over full mass spectrum

***** excess in one region

Maximum excess observed at: $m_H = 12$	26.5 GeV
Local significance:	5σ
Probability of background up fluctuation:	3 x 10 ⁻⁷
Expected significance from SM Higgs at $m_H = 126.5$ GeV:	4.6σ
Signal strength μ at m _H = 126.5 GeV:	1.2 ± 0.3
Global significance (including LEE): 4.1 σ in 110-600 GeV or 4.3 σ in 1	110-150 GeV

Excess in different channels and over time

28

Excess in different channels and over time

*** Excess consistent** in γγ and **IIII decay**

Low resolution channels (IVIV, TT, bb) not yet as sensitive but will be important for measurement of properties of signal

Excess in different channels and over time

28

*** Excess consistent** in YY and IIII decay

Low resolution channels (IVIV, TT, bb) not yet as sensitive but will be important for measurement of properties of signal

Steady increase in excess 業 over time

Searches at ATLAS

SM Higgs Boson

Conclusion

*** Search for the SM Higgs Boson** in 110 < m_H < 600 GeV in 12 decay channels

- Full results obtained from 2011 data ($\sqrt{s} = 7 \text{ TeV}, \sim 4.7 \text{ fb}^{-1}$)
- ★ Updated results added from 2012 data ($\sqrt{s} = 8 \text{ TeV}$, ~5.9 fb⁻¹) for H→ $\gamma\gamma$ and H→ZZ→IIII

- * At 95% CL mass ranges 110-122.6 GeV and 129.7-558 GeV have been excluded
- * Excess observed in data at $m_H = 126.5$ GeV with local significance 5σ consistent with SM Higgs boson (expected significance 4.6 σ)
 - * Consistently seen in combination and individual $\gamma\gamma$ (4.5 σ) and 41 (3.4 σ)

***** Exciting times lie ahead:

 Update all low mass channels to check compatibility and add new data to learn more about this excess

July 19th, 2012 SM Higgs Boson Searches at ATLAS

Teaser: H→WW→IvIv update

Update with combined 2011+2012 dataset used (4.7+5.8 fb⁻¹), published this week!

- Basically same analysis as in 2011, slight changes in event selection for higher pile up stability
- * reduction to $e+\mu$ channel

Dataset	0 jet	l jet
Expected background	339 ± 6	84 ± 4
Expected signal m _H = 125 GeV	33.6 ± 0.4	8.6 ± 0.2
Observed in data	407	106

Teaser: H→WW→Iviv update

Broad excess not consistent with background hypothesis observed

Maximum excess observed at: m _H =	125 GeV
Local significance:	2.8σ
Probability of background up fluctuation:	3 x 10 ⁻³
Expected significance from SM Higgs at $m_H = 125$ GeV:	2.3σ
Signal strength at m _H = 125 GeV:	1.4 ± 0.5

***** Result consistent with $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow IIII$

Back Up

32

Combined results: Fitted signal strenght

July 19th, 2012 SM Higgs Boson Searches at ATLAS

Excess in 2011 data

H→WW→lvlv update

Systematics

Η→γγ

Systematic uncertainties	$\sqrt{s} = 7 \text{ TeV} [\%]$	$\sqrt{s} = 8 \text{ TeV} [\%]$
Signal event yield		
Photon identification	±8.4	±10.8
Effect of pileup on photon rec/ID	4	-4
Photon energy scale	±	0.3
Photon Isolation	±0.4	±0.5
Trigger	4	1
Higgs boson cross section (perturbative)	$gg \rightarrow H: {}^{+12}_{-8}, VBF: \pm 0.3,$ WH: ${}^{+0.2}_{-0.8}, ZH: {}^{+1.4}_{-1.6}, tH: {}^{+3}_{-9}$ $aa \rightarrow H +$	$gg \rightarrow H$: $^{+7}_{-8}$, VBF: ±0.2, WH: $^{+0.2}_{-0.6}$, ZH: $^{+1.6}_{-1.5}$, ttH: $^{+4}_{-9}$ 2 jets: $+25$
Higgs boson cross section (PDF+ α_S)	$gg \rightarrow H$: $^{+8}_{-7}$, VBF: $^{+2.5}_{-2.1}$, VH: ± 3.5 , ttH: ± 9	$gg \rightarrow H$: $^{+8}_{-7}$, VBF: $^{+2.6}_{-2.8}$, VH: ± 3.5 , ttH: ± 8
Higgs boson branching ratio	4	5
Higgs boson p_T modeling	low p_{T_i} : ±1.1, high j	p _{T1} : ∓12.5, 2-jets: ∓9
Underlying Event (2-jets)	VBF: ±6, 0	Others: ±30
Luminosity	±1.8	±3.6
Signal category migration		
Material	Unconv: ±4	, Conv: ∓3.5
Effect of pileup on photon rec/ID	Unconv: ±3, Conv: ∓2,	Unconv: ±2, Conv: ∓2,
	2-jets: ±2	2-jets: ±12
Jet energy scale	low	p _{Ti}
	$gg \rightarrow H: \pm 0.1$, VBF: ± 2.6 ,	$gg \rightarrow H: \pm 0.1$, VBF: ± 2.3 ,
	Others: ±0.1	Others: ±0.1
	high	p _{Tt}
	$gg \rightarrow H: \pm 0.1$, VBF: ± 4 ,	$gg \rightarrow H: \pm 0.1$, VBF: ± 4 ,
	Others: ±0.1	Others: ±0.1
	2-j	jets
	$gg \rightarrow H: \mp 19$, VBF: ∓ 8 ,	$gg \rightarrow H: \mp 18$, VBF: ∓ 9 ,
	Others: ±15	Others: ±13
Jet-vertex-fraction		2-jets: ±13, Others: ∓0.3
Primary vertex selection	negli	igible
Signal mass resolution		
Calorimeter energy resolution	±12	
Electron to photon extrapolation	±6	
Effect of pileup on energy resolution	±4	
Primary vertex selection	negligible	
Signal mass position		
Photon energy scale	±	0.6
Background modeling	see T	able 3

H→WW→Iviv

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	
1-jet incl. ggF signal ren./fact. scale	10	-
Parton distribution functions	8	2
Jet energy scale	7	4
WW modelling and shape	-	5
QCD scale acceptance	4	2
WW normalisation	-	4
W+jets fake factor	-	4
Lepton isolation	3	3
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	28	
2-jet incl. ggF signal ren./fact. scale	16	-
WW normalisation	0	14
b-tagging efficiency	-	8
Top normalisation	-	6
Pile-up	5	5

H→WW→lvqq

* Characteristics

- Isolated electron/muon & ET^{miss} & 2 non b-jets
- analysis categories: **0**, **1** jet (gg) and **2** jets (VBF)

Backgrounds

- W+jets, Z+jets, top, dibosons
- estimated from fit to mass spectrum (composition estimated by MC/data driven methods)

H→WW→lvqq

- mass miujj
- constraint: $m_{lv} = m_W$

Upper limit on cross section is 2.6 pb
 (2.2 x σ_{SM}), expected 2.2 pb (1.7 x σ_{SM})

H→ZZ→llqq

*** Characteristics**

 Two isolated electrons/ muons & 2 jets

analysis categories: exactly 2 b-tagged jets and less than 2 b-tagged jets

- * Discriminating variable
 - * mass m_{IIjj}
 - constraint: m_{jj} = m_Z

Result

- No excess observed for m_H between 200-600 GeV
- Observed exclusion: 300-323 GeV, 353-410 GeV, expected: 351-404 GeV

*** Characteristics**

- Two opposite sign electrons/muons & ET^{miss}
- analysis categories: low and high pile-up (dependence due to E_T^{miss})

Discriminating variable

transverse mass m_T (2 neutrinos)

$$m_T^2 = \left[\sqrt{m_Z^2 + \left|\vec{p}_T^{ll}\right|^2} + \sqrt{m_Z^2 + \left|\vec{p}_T^{miss}\right|^2}\right]^2 - \left[\vec{p}_T^{ll} + \vec{p}_T^{miss}\right]^2$$

Result

- No excess observed for m_H between
 200-600 GeV
- Observed exclusion: 319-558 GeV
 Expected exclusion: 280-497 GeV

ATLAS Detector

J. Kraus, BSM Quy Nhon