Rare Decays @ LHCb

Giampiero Mancinelli

CPPM - Aix-Marseille Université, France On behalf of the LHCb Collaboration

Rencontres du Vietnam Quy Nhon, Vietnam July 15-21, 2012

WHAT THIS TALK IS NOT ABOUT

Well, almost ...

Introduction $B \to \mu \mu$ $D \to \mu \mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0} \mu^+ \mu^- B \to K^{(*)} \mu^+ \mu^- B \to \pi \mu \mu B \to K^* \gamma$ Conclusions

OUTLINE

- Rare leptonic decays ►
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$ [PRL 108, 231801 (2012)]
 - $D^0 \rightarrow \mu^+ \mu^-$ [LHCb-CONF-2012-005]
 - $\tau \to \mu \mu \mu$ [LHCb-CONF-2012-015] $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$ [LHCb-CONF-2012-010]
- Rare semi-leptonic decays ►

•
$$B^0 \rightarrow K^{*0}\mu^+\mu^-$$
 (angular analysis) [LHCb-CONF-2012-008]
• $B \rightarrow K^{(*)}\mu^+\mu^-$ (isospin asymmetry) [arXiv:1205.3422]
• $B^+ \rightarrow \pi^+\mu^+\mu^-$ [LHCb-CONF-2012-006]

Rare radiative decays ►

> • $B^0 \to K^{*0} \gamma$ (CP asymmetry) [LHCb-CONF-2012-004]

All results obtained with $\sim 1 \, fb^{-1}$

INTRODUCTION

Flavor Changing Neutral Currents

► FCNC processes prohibited at tree level within SM.

$$b \to sf\bar{f}$$

 $(b \to df\bar{f})$

- Measure effect of possible new particles entering (for instance) the loop:
 - branching fractions (B),
 - angular distributions,
 - asymmetries (CP, isospin).
- Complementary approach to direct searches (ATLAS/CMS).

$\textbf{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$

INTRODUCTION

Muon and Hadron ID

good muon identification

•
$$\epsilon(\mu) > 97\%(p_T > 1.7 \, GeV)$$

Muon Trigger

good muon trigger efficiency

good K- π separation

 Low trigger p_T thresholds for muons (0.5 GeV for di-muons)

Giampiero Mancinelli

 $\textbf{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$

INTRODUCTION

B (D) Selection Criteria

- Decay vertex displaced from PV, large track impact parameter with respect to PV
- Quality of decay vertex and tracks
- B(D) meson candidate required to come from a PV
- Low systematics, fairly clean environment for a hadronic machine

B Measurements Strategy

- Normalize \mathcal{B} to modes with similar trigger and geometrical features; $\frac{\mathcal{B}(signal)}{\mathcal{B}_{norm}} = \frac{\epsilon_{norm}}{\epsilon_{signal}} \times \frac{N_{signal}}{N_{norm}}$
- When necessary use the LHCb measured f_s/f_d value $(0.267^{+0.021}_{-0.020})$ LHCb-CONF-2011-034
- Use control channels to avoid using simulation (ie. to calibrate multivariate classifiers, evaluate trigger efficiencies, etc)
- 'Blind' analysis to avoid biases
- CL_s method [A. Read, J. Phys. G28 (2002)] to extract limits

$$\text{Introduction} \quad \textbf{B} \rightarrow \mu\mu \quad D \rightarrow \mu\mu \quad \tau \rightarrow 3\mu \quad \textbf{B} \rightarrow 4\mu \quad \textbf{B}^0 \rightarrow K^{*0}\mu^+\mu^- \quad \textbf{B} \rightarrow K^{(*)}\mu^+\mu^- \quad \textbf{B} \rightarrow \pi\mu\mu \quad \textbf{B} \rightarrow K^*\gamma \quad \text{Conclusions}$$

- Rare leptonic decays
 - $B^0_{(s)} \to \mu^+ \mu^-$ [PRL 108, 231801 (2012)]
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \rightarrow \mu \mu \mu$ • $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- ► Rare semi-leptonic decays
 - $B^0 \to K^{*0} \mu^+ \mu^-$ (angular analysis)
 - $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry)
 - $B^+ \to \pi^+ \mu^+ \mu^-$
- Rare radiative decays
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

$$\text{Introduction} \quad \textbf{B} \to \mu\mu \quad D \to \mu\mu \quad \tau \to 3\mu \quad B \to 4\mu \quad B^0 \to K^{*0}\mu^+\mu^- \quad B \to K^{(*)}\mu^+\mu^- \quad B \to \pi\mu\mu \quad B \to K^*\gamma \quad \text{Conclusions}$$

$$B^0_{(s)}
ightarrow \mu^+ \mu^-$$

Motivation

Low uncertainty in SM predictions [A. Buras et al., JHEP 1010 (2010)] [E. Gamiz et al., Phys. Rev. D 80 (2009) 014503].

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9} \times 1.1 (*) \mathcal{B}(B^0 \to \mu^+ \mu^-) = (0.10 \pm 0.01) \times 10^{-9}$$

- Sensitive to NP scalar and/or pseudo-scalar contributions (extended Higgs sectors)
- ► (*)De Bruyn et al., arXiv:1204.1735

Analysis

- Candidates classified according to: invariant mass and MVA BDT
- BDT: 9 variables describing event topology/kinematics trained on MC and calibrated on data

Combinatorial background (from semilept B decays) Peaking background (from $B \rightarrow hh'$) Cross-feed

SM signal $\epsilon(hh \rightarrow \mu\mu) \ 3.5 \times 10^{-5}$

Giampiero Mancinelli

ntroduction
$$B \rightarrow \mu\mu$$
 $D \rightarrow \mu\mu$ $\tau \rightarrow 3\mu$ $B \rightarrow 4\mu$ $B^0 \rightarrow K^{*0}\mu^+\mu^ B \rightarrow K^{(*)}\mu^+\mu^ B \rightarrow \pi\mu\mu$ $B \rightarrow K^*\gamma$ Conclusions

$$B^0_{(s)}
ightarrow \mu^+ \mu^-$$

Results

Limits are extracted from data and expectations with the CL_s method:

- Data compatible with Bkg+SM within 1σ
- ▶ **p-value** (1-CL_b) = 18%

 $B^0 \rightarrow \mu^+ \mu^-$ upper limit (95% C.L.)

Exp. Bkg Only

 1.1×10^{-9}

Yellow: region 68% compatible with bkg (B_d) or bkg + SM (B_s) signal hypothesis. Dashed line: expected median. Blue line: observed CL_s. Introduction $B \rightarrow \mu \mu$ $D \rightarrow \mu \mu$ $\tau \rightarrow 3\mu$ $B \rightarrow 4\mu$ $B^0 \rightarrow K^{*0}\mu^+\mu^ B \rightarrow K^{(*)}\mu^+\mu^ B \rightarrow \pi\mu\mu$ $B \rightarrow K^*\gamma$ Conclusions

$$B^0_{(s)}
ightarrow \mu^+ \mu^-$$

New: Combination CMS-ATLAS-LHCb

LHCb-CONF-2012-017 **Upper Limits (95% C.L.):**

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 8.1 \times 10^{-10}$

LHCb limit dominating the combination Approaching $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ SM prediction.

ntroduction
$$B \to \mu\mu$$
 $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

$$B^0_{(s)}
ightarrow \mu^+ \mu^-$$

Implications and Prospects

Prospect for a 3σ observation:

Giampiero Mancinelli

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

- ► Rare leptonic decays
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$ • $D^0 \rightarrow \mu^+ \mu^-$ [LHCb-CONF-2012-005]
 - $\tau \to \mu \mu \mu$ • $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$
- ► Rare semi-leptonic decays
 - $B^0 \to K^{*0} \mu^+ \mu^- (\mathcal{A}_{FB})$
 - $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry)
 - $B^+ \to \pi^+ \mu^+ \mu^-$
- Rare radiative decays
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

ntroduction
$$B \to \mu\mu$$
 $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

$D^0 ightarrow \mu^+ \mu^-$

Introduction

- Suppression of FCNC in charm sector driven by GIM mechanism;
- SM prediction: $10^{-13} < \mathcal{B}(D^0 \to \mu^+ \mu^-) < 6 \times 10^{-11}$ [G. Burdman *et al.*, PR D66 (2002)];
- ► Enhancement in NP models through presence down-type SUSY particles (R parity violating MSSM): $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 4.8 \times 10^{-9} \times \left(\frac{300 \, MeV}{m_d}\right)$ [E. Golowich *et al.*, PR D79 (2009)] (*m_d* down-type quark superpartner's mass)
- ▶ Pre-LHC limit: Belle @ 90% CL $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 1.4 \times 10^{-7}$ [E. Petric *et al.*, PR D81 (2010) 091102] BaBar [0.6, 8.1]x10⁻⁷ arXiv:1206.5419

Analysis

- Select D* samples $(D^{*+} \rightarrow D^0 (\rightarrow x^+ x'^-) \pi^+, x = \mu, K, \pi)$
- ► Main backgrounds: combinatorial background from semileptonic b- and c- hadron decays (reduced with MVA BDT) Peaking mis-identified $D^{*+} \rightarrow D^0 (\rightarrow h^+ h'^-) \pi^+$ (reduced with tight PID requirements).

•
$$D^{*+} \rightarrow D^0 (\rightarrow \pi^+ \pi^-) \pi^+$$

• $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$

Introduction $B \to \mu\mu$ $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

$D^0 o \mu^+ \mu^-$

Results

$$\blacktriangleright \ \mathcal{B}(D^0 \to \mu^+ \mu^-) = \frac{N_{D^{*+} \to D^0(\to \mu^+ \mu^-)\pi^+}}{N_{D^{*+} \to D^0(\to \pi^+ \pi^-)\pi^+}} \times \frac{\epsilon_{\pi\pi}}{\epsilon_{\mu\mu}} \times \mathcal{B}(D^0 \to \pi^+ \pi^-),$$

• extracting yields from 2D fit: $m(D^0)$ vs $m(D^{*+}-D^0)$

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to \mathbf{3} \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

- Rare leptonic decays ►
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \rightarrow \mu \mu \mu$ [LHCb-CONF-2012-015]
 - $B^0_{(s)} \to \mu^+ \mu^- \mu^+ \mu^-$
- Rare semi-leptonic decays ►

•
$$B^0 \to K^{*0} \mu^+ \mu^- (\mathcal{A}_{FB})$$

- $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry) $B^+ \to \pi^+ \mu^+ \mu^-$
- Rare radiative decays ►
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

Introduction $B \rightarrow \mu\mu$ $D \rightarrow \mu\mu$ $\tau \rightarrow 3\mu$ $B \rightarrow 4\mu$ $B^0 \rightarrow K^{*0}\mu^+\mu^- B \rightarrow K^{(*)}\mu^+\mu^- B \rightarrow \pi\mu\mu$ $B \rightarrow K^*\gamma$ Conclusions

$au o \mu \mu \mu$

Introduction

- LFV decay, ν oscillations, extremely suppressed within SM (in the charged sector: BR<10⁻⁴⁰) and beyond current experimental sensitivities.
- cLFV largely enhanced in several NP scenarios in τ more than in μ decays:

 $\mathcal{B}(\tau \rightarrow \mu \mu \mu) < 10^{-7}$ Little Higgs

[M. Blanke et al., Acta Phys. Pol B41 (2010) 657]

Current limits at 90% CL:

BaBar $\mathcal{B}(\tau \to \mu\mu\mu) < 3.3 \times 10^{-8}$ Belle $\mathcal{B}(\tau \to \mu\mu\mu) < 2.1 \times 10^{-8}$ [PDG, J Phys G37 (2010) 075021]

• Large $\sigma_{\tau}^{prod} \sim 80 \mu b$ at LHC

Analysis

- Loose selection + further event classification in a 3D space:
 - MVA BDT (geo and kin info) to reduce combinatorial background (5 bins)
 - MVA BDT (PID) to estimate compatibility with μ hypothesis (5 bins)
 - Invariant mass $m_{\mu\mu\mu}$ (6 bins)

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3\mu \quad B \to 4\mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

$au ightarrow \mu \mu \mu$

Results

 $\leftarrow ({\rm Highest~4~2D~bins~in~BDT(Geo-Kin)~and~BDT(PID)}) \\ {\rm Total,~Combinatorial,~} D_s^- \rightarrow \eta (\mu \mu \gamma) \mu^- \nu_\mu$

$$\begin{aligned} \mathcal{B}(\tau \to \mu \mu \mu) &= \\ \mathcal{B}(D_s^- \to \phi(\mu \mu) \pi^-) \times \frac{f(\tau^-(D_s^+))}{\mathcal{B}(D_s^- \to \tau^- \nu_{\bar{\mu}})} \times \frac{\epsilon_{norm}}{\epsilon_{sig}} \times \frac{N_{sig}}{N_{norm}} \end{aligned}$$

$$N_{norm} \equiv N_{D_s^- \to \phi(\mu\mu)\pi^-} = 45500 \pm 400_{\text{stat}} \pm 800_{\text{syst}}$$

Expected CL_s as a function of $\mathcal{B}(\tau \rightarrow \mu \mu \mu)$ under bkg-only hypothesis; 68% and 95%

Observed:

 $\mathcal{B}(\tau \to \mu\mu\mu) < 6.3(7.8) \times 10^{-8}$ at 90(95)% CL Close to B-factories sensitivity. Proof of principle: measurement can be made in hadronic environment (LHCb upgrade)

ntroduction
$$B \to \mu\mu$$
 $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

- ► Rare leptonic decays
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \longrightarrow \mu \mu \mu$ • $B^0_{(s)} \longrightarrow \mu^+ \mu^- \mu^+ \mu^-$ [LHCb-CONF-2012-010]
- ► Rare semi-leptonic decays
 - $B^0 \to K^{*0} \mu^+ \mu^- (\mathcal{A}_{FB})$
 - $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry)
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$
- Rare radiative decays
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

Introduction $B \to \mu\mu$ $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

$$B^0_{(s)}
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$

Motivations

- ► In SM, large contribution from resonant $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-) (\mathcal{B} = 2.3 \pm 0.9) \times 10^{-8})$ [PDG, J. Phys. G37 (2010)]
- ► From other SM processes: $\mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^- \gamma^* (\mu^+ \mu^-) \sim 10^{-10} - 10^{-11}$ [D. Melikhov, N. Nikitin, PR D70 (2004)]
- Enhancement possible in scenarios with new particles ($\rightarrow \mu \mu$)

Strategy: a cut and count analysis

- ► Resonant candidates $B_s^0 \rightarrow J/\psi \phi(\rightarrow \mu \mu \mu \mu)$ used to optimize the selection (observed yield compatible with SM)
- For non-resonant mode, expected background: $0.38^{+0.23}_{-0.17}$ in B⁰, $0.30^{+0.22}_{-0.20}$ in B⁰_s
- Normalization to $B^0 \rightarrow J/\psi(\mu^+\mu^-)\bar{K}^{0*}(K^+\pi^-)$

ntroduction
$$B \rightarrow \mu\mu$$
 $D \rightarrow \mu\mu$ $\tau \rightarrow 3\mu$ $B \rightarrow 4\mu$ $B^0 \rightarrow K^{*0}\mu^+\mu^- B \rightarrow K^{(*)}\mu^+\mu^- B \rightarrow \pi\mu\mu$ $B \rightarrow K^*\gamma$ Conclusions

$$B^0_{(s)}
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$

Results

- Unblinded event distribution in the non-resonant mass window
- Compatible with background expectation

▶ Preliminary upper limits (95%C.L.) extracted with the CL_s method:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.3 \times 10^{-8}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.4 \times 10^{-9}$$

First limits on these processes.

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

- ► Rare leptonic decays
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \rightarrow \mu \mu \mu$ • $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- ► Rare semi-leptonic decays
 - $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (angular analysis) [LHCb-CONF-2012-008]
 - $B \rightarrow K^{(*)} \mu^+ \mu^-$ (isospin asymmetry)
 - $B^+ \to \pi^+ \mu^+ \mu^-$
- Rare radiative decays
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

Introduction $B \to \mu \mu$ $D \to \mu \mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0} \mu^+ \mu^- B \to K^{(*)} \mu^+ \mu^- B \to \pi \mu \mu B \to K^* \gamma$ Conclusions

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Yield extraction

- Sensitive to magnetic and vector and axial semileptonic penguin operators C7, C9, and C10
- Goal: measure angular observables (NP)
- Yield extraction: loose selection + MVA BDT (Topology, Kinematics, PID)
- Peaking backgrounds: $B^0 \to K^{*0}J/\psi \ (\pi \to \mu, \mu \to \pi)$, $B_{\rm s}^0 \to \phi \mu^+ \mu^- (1.5 \pm 0.5)\%$
- Yield = 900 ± 34 (more than BaBar+Belle+CDF)

Angular analysis

- Decay described with 3 angles $(\theta_l, \theta_k, \phi)$ and dimuon mass q^2
- Parametrized in terms of angular observables ►

 $\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_k \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} = \frac{9}{16\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right] + \frac{1}{4} \left[F_L \cos^2 \theta_K +$ $F_{\ell}\cos^2\theta_{\ell}(2\cos^2\theta_{\ell}-1)$ + $\frac{1}{4}(1-F_L)(1-\cos^2 heta_K)(2\cos^2 heta_\ell-1) +$ $S_3(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos 2\hat{\phi} +$ $\frac{4}{2}A_{FB}(1-\cos^2\theta_K)\cos\theta_\ell +$ AIM, T-odd CP

 \mathcal{A}_{FR} , forward-backward asymmetry (θ_I) FL, fraction of K*0 longitudinally polarized S3, asymmetry in K*0 transverse polarization

Giampiero Mancinelli

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3\mu \quad B \to 4\mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Observables in bins of q^2

Fit in 4D (3 angles + B^0 mass).

- Errors including syst uncertainties,
- A_{FB} pre-LHC: consistency, large uncertainty [BaBar, PRL 102 (2009), 091803], [CDF, arXiv:1108:0095v1], [Belle, PRL 103 (2009) 171801]
- Theory predictions from [C. Bobeth et al., arXiv:1105.0376]

- Most precise (preliminary) measurements up to date; compatible with SM
- ► Zero-crossing point, $q_0^2 = 4.9^{+1.1}_{-1.3} GeV^2/c^4$; compatible with SM: $3.9 4.3 GeV^2/c^4$

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

- ► Rare leptonic decays
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \rightarrow \mu \mu \mu$ • $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- ► Rare semi-leptonic decays
 - $B^0 \to K^{*0} \mu^+ \mu^- (\mathcal{A}_{FB})$
 - $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry) [arXiv:1205.3422]
 - $B^+ \to \pi^+ \mu^+ \mu^-$
- ► Rare radiative decays
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$

ISOSPIN ASYMMETRY

Introduction

$$- \frac{\mathcal{B}(B^0 \to K^{(*)0} \mu^+ \mu^-) - \frac{\tau_0}{\tau_+} \mathcal{B}(B^{\pm} \to K^{(*)\pm} \mu^+ \mu^-)}{\pi_+}$$

• Definition:
$$A_l \equiv \frac{\tau_+}{\mathcal{B}(B^0 \to K^{(*)0} \mu^+ \mu^-) + \frac{\tau_0}{\tau_+} \mathcal{B}(B^{\pm} \to K^{(*)\pm} \mu^+ \mu^-)}$$

- ► Within SM, $A_l \sim 0$ (being $\mathcal{O}(10\%)$ at $q^2 \to 0$ for $B^0 \to K^{*0}\mu^+\mu^-$) [T. Feldman and J. Matias, JHEP 01 (2003) 074]
- ► Pre-LHC experimental status: [BaBar, PRL 102 (2008)], [Belle, PRL 103 (2009)], [CDF, PRL 107 (2011)] overall consistent with SM (but 3.9σ from SM in combined BaBar $K^{(*)}$ below J/ψ).

Analysis

- ► Selection optimized to have consistent samples and Yields extracted through fit q² bins.
- Consistent with SM and Belle/Babar in $B \to K^* \mu^+ \mu^-$
- BUT discrepancy in B → Kμ⁺μ⁻. Naive average over the q² bins gives a 4.4σ effect. Unexpected! More statistics is needed.

Giampiero Mancinelli

$$\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$$

- ► Rare leptonic decays
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \rightarrow \mu \mu \mu$ • $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- ► Rare semi-leptonic decays
 - $B^0 \to K^{*0} \mu^+ \mu^-$ (angular analysis)
 - $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry)
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ [LHCb-CONF-2012-006]
- Rare radiative decays
 - $B^0 \to K^{*0} \gamma$ (CP asymmetry)

Introduction $B \rightarrow \mu \mu$ $D \rightarrow \mu \mu$ $\tau \rightarrow 3\mu$ $B \rightarrow 4\mu$ $B^0 \rightarrow K^{*0}\mu^+\mu^- B \rightarrow K^{(*)}\mu^+\mu^- B \rightarrow \pi\mu\mu$ $B \rightarrow K^*\gamma$ Conclusions

$B^+ \rightarrow \pi^+ \mu^+ \mu^-$

Introduction

• $b \rightarrow d\mu\mu$ transition never observed before. SM prediction:

$${\cal B}(B^+ o \pi^+ \mu^+ \mu^-) = (1.96 \pm 0.21) imes 10^{-8}$$
 [S. Hai-Zhen *et al.*, CTP 50 (2008) 696]

• Previous best limit from Belle $\mathcal{B} < 6.9 \times 10^{-8} @90\% CL$ [PRD 78 (2008) 011101]

Analysis

- MVA BDT to suppress combinatorial background
- vield extracted by means of EML fit:
 - mis-identified $B^+ \to K^+ \mu^+ \mu^-$
 - partially reconstructed background
 - combinatorial background (not shown)
 - signal using $B^+ \rightarrow J/\psi K^+$ as a proxy
- $25.3^{+6.7}_{-6.4}$ events (syst included), 5.2σ significance

LHCb Preliminary

• Normalize to $B^+ \rightarrow J/\psi K^+$: $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6_{(stat)} \pm 0.2_{(syst)}) \times 10^{-8}$ - Preliminary

Rarest B decay ever observed.

ntroduction
$$B \rightarrow \mu\mu$$
 $D \rightarrow \mu\mu$ $\tau \rightarrow 3\mu$ $B \rightarrow 4\mu$ $B^0 \rightarrow K^{*0}\mu^+\mu^- B \rightarrow K^{(*)}\mu^+\mu^- B \rightarrow \pi\mu\mu$ $B \rightarrow K^*\gamma$ Conclusions

- ► Rare leptonic decays
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - $D^0 \rightarrow \mu^+ \mu^-$
 - $\tau \rightarrow \mu \mu \mu$ • $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- ► Rare semi-leptonic decays
 - $B^0 \to K^{*0} \mu^+ \mu^-$ (angular analysis)
 - $B \to K^{(*)} \mu^+ \mu^-$ (isospin asymmetry)
 - $B^+ \to \pi^+ \mu^+ \mu^-$
- ► Rare radiative decays
 - $B^0 \rightarrow K^{*0} \gamma$ (CP asymmetry) [LHCb-CONF-2012-004]

ntroduction
$$B \to \mu\mu$$
 $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

$$B^0 o K^{*0} \gamma$$

CP asymmetry

- In SM, B radiative decays proceed at leading order via electromagnetic penguins transitions
- Extensions of the SM predict additional one-loop contributions (sensitive to NP)

$$\begin{split} &\mathcal{A}_{CP}^{SM}(B^0 \to K^{*0}\gamma) = -0.0061 \pm 0.0043 \text{ [Y. Keum et al.,} \\ &\text{PRD 72 (2005) 014013]} \\ &\mathcal{A}_{CP}^{EXP}(B^0 \to K^{*0}\gamma) = -0.016 \pm 0.022 \pm 0.007 \\ &\text{[BaBar, PRL 103 (2009) 211802]} \end{split}$$

LHCb:
$$\mathcal{A}_{CP}^{EXP} = \mathcal{A}_{CP}^{RAW} - \mathcal{A}_{K\pi}^{Det} - \kappa \mathcal{A}_{B^0}^{Prod}$$
;
 $\mathcal{A}_{CP}^{RAW} = \frac{N(B^0) - N(B^0)}{N(B^0) + N(B^0)} = 0.003 \pm 0.017_{stat} \pm 0.007_{syst}$.
 $-\mathcal{A}_{K\pi}^{Det} = \frac{\epsilon_{(K^-\pi^+)} - \epsilon_{(K^+\pi^-)}}{\epsilon_{(K^-\pi^+)} + \epsilon_{(K^-\pi^+)}} = 0.010 \pm 0.002$,
 $-\kappa \mathcal{A}_{B^0}^{Pod} = -0.004 \pm 0.005$;
 $\mathcal{A}_{CP}^{EXP} = 0.008 \pm 0.017_{stat} \pm 0.009_{syst}$ - Preliminar

Most precise measurement

signal (dashed) combinatorial background (dashed) $B \rightarrow K^{*0} \pi^0 X$ (dashed) $B^+, 0 \rightarrow K^{*0} \pi^+, 0_{\gamma}$ (dotted)

Introduction $B \to \mu\mu$ $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

CONCLUSIONS

- ► Rare decays are powerful ways to search for NP beyond the SM
- ► LHCb strongly performing and very well positioned in this field
- World Best Limits on the measurements of $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-), \mathcal{B}(D^0 \to \mu^+ \mu^-)$
- First observation of $B^+ \to \pi^+ \mu^+ \mu^-$
- Most precise measurements of angular observables and $\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma)$.
- ► Still... consistency with SM in FCNC... but severe constraints on NP models... though the isospin asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$ decays...
- ► All measurements are still statistically limited expect further improvements.

BACKUP

Backup

- Significant NP BR enhancement in $B_s \! \to \! \mu^+ \mu^-$ has been ruled out by the LHC, we are getting close to the SM value

⇒ It's important to understand the central value and uncertainty of the SM predictions

So far we used Buras prediction BR(B_s→µ⁺µ⁻)= (3.2±0.2) x10⁻⁹

$$\mathcal{B}(B_q \to \mu^+ \mu^-) = 4.36 \cdot 10^{-10} \frac{\tau_{B_q}}{\hat{B}_q} \frac{Y^2(v)}{S(v)} \Delta M_q \quad \text{with } \mathsf{B_s} = 1.33 \pm 0.06 \quad \begin{array}{l} \mathsf{E}. \ \mathsf{Gamiz} \ \mathsf{et} \ \mathsf{al: Phys.Rev.D} \\ \mathsf{80} \ (2009) \ \mathsf{014503} \end{array}$$

Other possibility: take advantage of the improvement in f_{Bs} from Lattice :

$$BR(B_s \rightarrow \mu^+ \mu^-) = \frac{G_F^2 \alpha^2}{64\pi^2} f_{B_s}^2 m_{B_s}^3 |V_{0b} V_{1s}^*|^2 \tau_{B_s} \sqrt{1 - \frac{4m_{\mu_s}^2}{m_{B_s}^2}} \qquad (2.4)$$

$$\times \left\{ \left(1 - \frac{4m_{\mu_s}^2}{m_{B_s}^2}\right) |C_{Q_1} - C_{Q_1}'|^2 + \left| (C_{Q_2} - C_{Q_2}') + 2(C_{10} - C_{10}') \frac{m_{\mu_s}}{m_{B_s}} \right|^2 \right\}.$$

• N. Mahmoudi et al (arXiv:1205.1845): (3.53 \pm 0.38) x10⁻⁹ using f_{Bs} = (234 \pm 10)MeV

• C. Davies (arXiv:1203.3862): (3.32±0.25)x10⁻⁹ using f_{Bs} = (227±4)MeV

Which value of f_{Bs} should we use?

Introduction $B \to \mu\mu$ $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^ B \to K^{(*)}\mu^+\mu^ B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

- De Bruyn et al (arXiv:1204.1735): Need to take into account the B_s mixing
 - Theoretically: CP-average at t=0
 - · Experimentally: CP-average integrated over t

$$BF (B_s \to f)_{theo} = \begin{bmatrix} 1 - y_s^2 \\ 1 + A_{\Delta\Gamma}^f y_s \end{bmatrix} BF (B_s \to f)_{exp} \qquad y_s = \frac{\Delta\Gamma_s}{2\Gamma_s}$$

$$0.911 \pm 0.014 \text{ for } B_s \to \mu^+\mu^- \text{ using}$$

$$y_s \text{ from } LHCb\text{-}CONF\text{-}2012\text{-}002$$

$$BR_{theo}(B_s \to \mu^+\mu^-) < 4.5 \times 0.911 = 4.1 \times 10^{-9} @ 95\% \text{ CL}$$

 $\text{Introduction} \quad B \to \mu \mu \quad D \to \mu \mu \quad \tau \to 3 \mu \quad B \to 4 \mu \quad B^0 \to K^{*0} \mu^+ \mu^- \quad B \to K^{(*)} \mu^+ \mu^- \quad B \to \pi \mu \mu \quad B \to K^* \gamma \quad \text{Conclusions}$

Figure 17. The correlations between M_A and $\tan\beta$ in the CMSSM (left panel) and in the NUHM1 (right panel). Also shown are the 5- σ discovery contours for observing the heavy MSSM Higgs bosons H, A in the three decay channels H, $A \rightarrow \tau^+\tau^- \rightarrow jets$ (solid line), $jet+\mu$ (dashed line), jet+e (dotted line) at the LHC. The discovery contours have been obtained using an analysis that assumed 30 or 60 fb⁻¹ collected with the CMS detector [129.149].

Introduction $B \to \mu\mu$ $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^- B \to K^{(*)}\mu^+\mu^- B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

Introduction $B \to \mu\mu$ $D \to \mu\mu$ $\tau \to 3\mu$ $B \to 4\mu$ $B^0 \to K^{*0}\mu^+\mu^ B \to K^{(*)}\mu^+\mu^ B \to \pi\mu\mu$ $B \to K^*\gamma$ Conclusions

- Several studies, ex: Straub et al, arXiv:1206.0273
- Model independent constraint C_i = C_iSM +C_i^{NP}
- Over constraint Wilson coefficient with many measurement in a global fit

Red: Combined 10,20 constraints

Wilson coefficients compatible with their SM values at 95%CL

- Main limitation that prevents expoiting higher luminosity is the hardware trigger limiting the output rate at 1 MHz
- Propose to remove the hardware trigger and read out LHCb at 40MHz crossing rate
 ⇒ increase yields by 10-20 at 1-2 10³³cm²s⁻¹
 ⇒ aim to collect 50fb⁻¹
- LOI submitted to LHCC in March 2011, physics case endorsed
- Framework TDR submitted in may 2012

Introduction $B \rightarrow \mu\mu \quad D \rightarrow \mu\mu \quad \tau \rightarrow 3\mu \quad B \rightarrow 4\mu \quad B^0 \rightarrow K^{*0}\mu^+\mu^- \quad B \rightarrow K^{(*)}\mu^+\mu^- \quad B \rightarrow \pi\mu\mu \quad B \rightarrow K^*\gamma$ Conclusions

CERN/LHCC 2012-007	LHCb TDR	12, 25 May 20	012
--------------------	----------	---------------	-----

5 fb⁻¹ 50 fb⁻¹

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	0.2×10^{-3}	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	-	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi\gamma)$	-	0.13%	0.03 %	0.02 %
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \rightarrow K^{*0} \mu^+ \mu^-)$	25 % [14]	8%	2.5%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 % [16]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma (B \rightarrow D^{(*)}K^{(*)})$	$\sim 20^{\circ}$ [19]	4°	0.9°	negligible
triangle	$\gamma (B^0_s \to D_s K)$	-	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	-
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_