RENCONTRES DU VIETNAM

International Conference: Beyond the standard model in particle physics

Quy Nhon, Vietnam

15-21 July 2012

Topics

Higgs boson physics Top Physics Heavy Flavors Neutrinos Supersymmetry Dark matter Extra dimensions Technicolor and strong dynamics

Web site: http://confs.obspm.fr/RencontresVietnam/BTSM/index.htm Contact Marc Besançon : <u>marc.besancon@cea.fr</u> Secretariat Hady Schenten : <u>hady.schenten@orange.fr</u>

Qui Nhon is a coastal town in Center Vietnam. It is about one hour flight from Ho Chi Minh City and one hour and a haft from Hanoi. Qui nhon has an university for more than 50 years with 30 000 students with majors in science. BSM Higgs Searches with CMS Experiment

Maxim Titov, CEA Saclay, France

On behalf of the

COLLABORATION

15-21 July 2012, Quy Nhon, Vietnam

Beyond the Standard Model Higgs: Outline of the Talk

There are many possibilities that change the precise predictions of the minimal Higgs sector (higgs doublet field) of the Standard Model

- 2 Higgs Doublet Model (2 HDM):
 3 neutral and 2 charged higgs Bosons
- → Minimal Supersymmetric Model (MSSM) requires 2HDM
- ***** Neutral Higgs boson: $\phi \rightarrow \tau \tau$, bb, $\mu \mu$
- ***** Charged Higgs boson: $H^+ \rightarrow \tau v$
- Higgs in Next-to-MSSM (nMSSM):
- A very light CP-odd scalar boson $a_1 \rightarrow \mu \mu$
- Higgs in Exotic Models:
- ◆ Doubly charged Higgs Φ⁺⁺ → I⁺I⁺ (type-II See-Saw like models)
- Extensions to the Standard Model:
 Fermiophobic Higgs (changes low mass Higgs production and decays dramatically)

There is now strong evidence for a Higgs-like sector \rightarrow I will present CMS searches for potential Higgs bosons beyond the Standard Model

- > Production via gluon fusion (b, t loops) and associated b-quark annihillation
- Find the second secon

<u>CMS searches</u> in decays into <u>b-bbar (90%)</u>, ττ (10%), μμ (0.04%)

φ (h, A, H)→ bb Event Selection

fa la		
Analysis Strateg	pp $\rightarrow \phi b, \phi - \phi b$	→ bb c b decays (jet containing a muon) decays
	<u>Semileptonic</u>	<u>Hadronic</u>
Trigger :	Muon+1/2 Jets	2/3 Jets
	≥ 1/2 b-tagged	≥ 2 b-tagged
Lepton (Muon):	P _τ > 15 GeV	
	(no Isolation applied)	
≻ <u>Jets:</u>	\geq 2 Jets of P _T > 30 GeV	≥ 3 Jets:
	+ 3rd Jet of $P_T > 20$ GeV	P _T 1st > 46 (60)* GeV
	η (jets) < 2.6,	P _T 2nd > 38 (53)* GeV
	all 3 b-tagged	P _T 3rd > 20 GeV
	Muon is within one of	η (jets) < 2.2
	two leading jets	all 3 b-tagged

The major background, QCD, is estimated from data. The other backgrounds, ttbar and Z(bb)+jets are taken from MC. *Jet P_T Threshold depends on Higgs Mass hypothesis: lower (higher) Thresholds used for M ϕ < 180 GeV (M ϕ > 180 GeV), driven by Trigger Thresholds

A significant excess in the di-jet mass distribution (M_{12}) of the two leading jets could be an evidence of a signal \rightarrow data in agreement with background prediction (M_{12} resolution ~ 15%)

p (h, H, A) → bb Exclusion Limit

CMS

Set Upper Limit on pp $\rightarrow \varphi b, \varphi \rightarrow bb$ production by fitting observed M₁₂ distribution. (Non-observation of $\varphi \rightarrow bb$ signal excludes region of large tan β in MSSM Space)

φ (h, H, A) $\rightarrow \tau\tau$ Event Selection

Analysis Strategy:

$φ \rightarrow \tau \tau$ Signal searched for in 3 τ-decay channels: e+µ; e+τ_{had}; µ+τ_{had} τ_{had}: Particles produced in hadronic τ decay

Similar to SM H \rightarrow $\tau\tau$ search, but with b-tagged/no b-tag selection

➢ <u>Trigger:</u>

Events triggered by e+ μ , e+ τ_{had} and μ + τ_{had} Triggers, P_T thresholds 10-20 GeV/c

Leptons:

Electrons P_τ > 10-20 GeV |η| < 2.1 (2.3 for e + μ) isolated Muons P_T > 10-20 GeV |η| < 2.1 isolated

τ_{had} P_T > 20 GeV |η| < 2.3 Tau Identification Veto against e/μ

Opposite Charge Lepton Pair

Veto Events with additional isolated Leptons

- ➤ Large probability for having a b-jet in the central regions → select events in 2 Categories: non-b-Tag and b-Tag
 - □ b-Tag : ≤ 1 jet with pT > 30 GeV, ≥ 1 b-Tagged Jet with pT > 20 GeV
 - Non b-Tag : ≤ 1 jet with pT > 30 GeV, No b-Tagged Jet with pT > 20 GeV

Search for $\varphi \rightarrow \tau \tau$: Background Estimation and Suppression

Major backgrounds : $Z \rightarrow \tau\tau$, $Z \rightarrow ee$, $\mu\mu$, QCD, W+Jets, ttbar, diboson.

> $Z \rightarrow \tau \tau$: Use observed $Z \rightarrow \mu \mu$ sample and replace muon by simulated tau ("embedding"). Normalized to the measured $Z \rightarrow \mu \mu$ cross section.

- QCD : Estimated from SS/OS data.
- **W+jets** : Shape from MC and normalization from P_{ζ} sideband.
- Top pair, Di-boson: MC

Taus, in signal, are produced with large pT

- \rightarrow neutrinos produced in the tau decay are collinear with the visible products. Requiring E_{τ}^{miss} to point in the direction of visible decay products
- \rightarrow suppress W+jets and top backgrounds.

Mass of τ Lepton pair reconstructed via Likelihood technique, based on:

- τ-decay Kinematics
- Kinematic Fit to improve mass resolution (compatibility of reconstructed E_T^{miss} with neutrino hypotheses) $\rightarrow \delta m(\tau \tau)/m(\tau \tau) \sim 20\%$ (25% without KF)

 \rightarrow Distribution observed in Data in Agreement with Background Expectation

MSSM: φ (h, H, A) $\rightarrow \tau \tau$ Exclusion Limit

- Higgsino mass μ = 200 GeV
- Gluino mass M_g = 800 GeV
- Stop and sbottom trilinear couplings A $_{b}$ = A $_{t}$

Limit obtained by scanning $tan(\beta)$ for each mass hypothesis M_{A_2}

Cross-section x BR for gg → φ and bb → φ computed as function of M_A, tan(β)
 Dependence of M_h and M_H on tan(β) taken into account

 m_{a^0} [GeV/c²]

uu Exclusion Limit (h, H, A) →

CMS Preliminary 2011 [GeV/c²] $\sqrt{s=7TeV}$ Run2011 $\int L= 4.96fb^{-1}$ \rightarrow Br($\phi \rightarrow \mu\mu$) ~ 0.04% is small, but $\begin{array}{l} \mathbf{A}^{0}/\mathbf{H}^{0}/\mathbf{h}^{0}:\;\boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}\\ \mathbf{m}_{\mathbf{A}^{c}}=\mathbf{150} \text{GeV}/\mathbf{c}^{2}\;\;\mathbf{tan}\boldsymbol{\beta}=\mathbf{30}\\ \boldsymbol{\gamma}^{\star}/\mathbf{2}^{0}\rightarrow\mathbf{1}^{+}\mathbf{1}^{-}\;\;(\mathbf{e}\;,\;\boldsymbol{\mu}\;,\;\boldsymbol{\tau}) \end{array}$ 105 \rightarrow clean signature, tan β can be tt extracted from the signal mass +16 10⁴ idates/2 t: t-channel t: s-channel $M_{A0} = M_{\mu+\mu-}$ and its width ($\Gamma_{\mu+\mu-}$) QCD $W^{\pm} \rightarrow l^{\pm}v$ ww H+A WΖ zz**Analysis Strategy:** Cand h b–jet Trigger: Μ_{μ+μ-} Single Muon A, h, H Resolution 0000 10 ~ 3% 10² 2×10^{2} 70 $M_{\mu^+\mu^-}$ [GeV/c²] b-jet Lepton (Muon): 100 tanβ >= 2 Muons CMS Preliminary 2011 Cat.1 s=7TeV 90 $P_{T1} > 30 \text{ GeV}, P_{T2} > 20 \text{ GeV}$ susy=1TeV m^{max}scenario Run2011 L= 4.96fb⁻¹ observed limit 80 **|η| < 2.1, isolated** xpected limit **Observed di-Muon** expected limit \pm 1 σ 70 expected limit $\pm 2\sigma$ Mass Spectrum 60 **Opposite Charge Lepton Pair** in Agreement with 50 **Background-only** Suppression of tt background: 40 **Hypothesis** $E_{T}^{miss} < 30 \text{ GeV}$ 30 20 Select events in 3 categories: 10 **1** b-tag jet /1 extra μ / anything else 150 200 250 300 CMS-PAS-HIG-12-011

Strategy: Search for tt \rightarrow H⁺W⁻bb or H⁺H⁻ bb final states with H $\rightarrow \tau v$

$H^+ \rightarrow \tau v$ Event Extraction

<u>Non-zero BR(t → H+b) →</u>

Increases event yield in τ(had)+Jets and e/μ+τ(had) channels
 Decreases event yield in e+μ channel with BR(t → H+b)

The signal is modelled as the excess of events yields in presence of H^{+:}

 $N_{excess} = N_{tt}^{MSSM} - N_{tt}^{SM} = N_{WH}^{2}(1-x)x + N_{HH}^{2}x^{2} + N_{tt}^{SM}((1-x)^{2}-1),$ $x = BR(t \rightarrow H^{+}b)$

Upper limit on BR(t \rightarrow H⁺b) excludes region of large tan β in MSSM Parameter space for M _{H+} / M_A \leq Mtop:

CMS-PAS-HIG-11-019 arXiv: hep-ex/1205.5736 Next-to-Minimal Supersymmetric Standard Model

search for a *light boson* decaying in opposite sign di-muon pairs

ernative moc non *it means: non exclusively SUSY SUSY SM with 4th generation cross sections enhanced w.r.t. SM (SM4) Minimal Seesaw Model of type II triplet of Higgs • doubly charged Higgs fields Neutral Fermiophobic Higgs 2HDM type I technicolor

......

interpretation in SM4 of the same analyses used for SM Higgs searches

search for double charged Higgs in 3 or more leptons final states

ZZ same SM signatures

WWW three leptons final state

combination of exclusive (lepton and jet tagged) channels and the non tagged one $\gamma\gamma +$

Searches for Doubly Charged Higgs $\Phi^{\pm}^{\pm} \rightarrow |^{\pm}|^{\pm}$

- Triplet Higgs-field in Minimal Type II See-Saw Models (the triplet is responsible for neutrino masses, the couplings directly linked to the mass matrix):
 - Prediction of additional scalar field that is a triplet under SU(2)
 - New Higgs-like particles: Φ⁺⁺, Φ⁺, Φ⁰
 (if observed, would establish this mechanism as the most promising explanation)
- CMS search for Φ ++ and Φ +
 - Produced in association with singly charged Higgs or in pairs since Φ++, Φ+ are assumed to be degenerate
 - Unknown neutrino mass matrix → unknown branching ratios (assume BR to leptons only)
 - Six standard searches covered, where $BR(\Phi^{++} \rightarrow I^+I^+)=100\%$
 - Four additional model dependent points (BP1-BP4) to probe different characteristic of neutrino mass matrix

$\Phi^{\pm\pm}$ |±|± Event Selection

➢ <u>Unique Experimental Signature:</u> 3 or 4 leptons in the final state → use samesign di-lepton combinations of all flavors (no SM background with real leptons)

Analysis Strategy:

dilepton triggers: 17/8 GeV for ee, eµ; varying for $\mu\mu$

Lepton selection:

- At least two leptons with pT > 20 / 10 GeV
- Loose isolation requirement
- Veto of low invariant mass resonances (< 12 GeV)

Topological cuts on leptons depending on final states:

- Σp_T cuts on leptons (depend on m_{ϕ})
- Tight isolation of leptons
- Z veto, E_t^{miss}
- Cut on Δφ between leptons

Events are counted in the mass window depending on the Higgs boson mass considered

□ Selections are optimized as a function of mΦ separately for ee, $e\tau_h$, and $\tau_h \tau_h$ events, where e = e, m

Backgrounds are estimated from sidebands

nMSSM: Light Pseudoscalar Higgs a, -> µ+ µ-

Next-to-Minimal Supersymmetric Standard Model (nMSSM):

- Adds singlet scalar field, thereby expanding the Higgs sector to three CPeven (h₁, h₂ and h₃), two CP-odd (a₁, a₂) and two charged scalars (H⁺, H⁻)
- A light (~ 10GeV) boson is produced (this model can survive also with a Higgs at 125 GeV!)

• CMS search for $a_1 \rightarrow \mu^+ \mu^-$:

Preselection:

Analysis Strategy:

- Choose isolated opposite sign dimuons:
- $p_{T\mu} > 4 \text{ GeV } \& p_{T\mu\mu} > 6 \text{ GeV}$
- Search above/below the upsilon peaks in dimuon invariant mass

5.5 < M_{μμ} < 9 GeV 11.5 < M_{μμ} < 14 GeV

 \rightarrow exclusion limits set at the level of 2 – 6 pb for σ x Br

Fermiophobic Higgs

Fermiophobic

WW (SM)

ZZ (SM)

77

Zy (SM)

200

250

M_µ [GeV]

- No excess in ττ, signal strength in γγ might be too large
- Interest for beyond the SM scenario of EWSB (2 HDM)
 - FP is important part of Higgs program couplings
 - Fermiophobic Higgs
 - No couplings to fermions (Vector boson fusion (VBF) or associated VH production only)
 - Low mass higgs decays change dramatically
 - Higgs is boosted (exploit presence of two tag jets

in forward region or associate W and Z (leptons)

CMS Experiment at LHC, CERN Data recorded: Mon Sep 26 20:18:07 2011 CEST Run/Event: 177201 / 625786854 Lumi section: 450

 $E_{\pi}(\gamma 2) = 78.0 \text{ GeV}$

 $E_{m}(j1) = 288.8 \text{ GeV}$

 $E_{T}(j2) = 189.1 \text{ GeV}$

 $\eta(\gamma 1) = -0.405$

 $\eta(\gamma 2) = 0.037$

 $M_{11} = 1460 \text{ GeV}$

 $\eta(j1) = -2.022$

 $\eta(j2) = 1.860$

Combination of $\gamma\gamma$, WW, ZZ analysis at 7 TeV (4.9 – 5.1 fb-1):

- Excludes at 95% CL 110-194 GeV
- Excludes at 99% CL except for 110-124.5 GeV, 127 -147.5 GeV and 155-180 GeV

 95% CL limits: Tevatron 119 GeV [arXiv:1109:0576v1], ATLAS 121 GeV [arXiv:1205.0701v1], CMS 194 GeV [arXiv1207.1130v1]

Fermiophobic Higgs -> yy Analysis (2012)

Update of $\gamma\gamma$ analysis @ 8 TeV \rightarrow analysis techniques different from SM analysis

Four mutually exclusive sub-channels:

> Dijet-tagged 2 classes (VBF): S/B ~1 (mH ~ 120 GeV $\gamma\gamma$ and two jets separated in rapidity, high & low dijet mass

Lepton-tagged 2 classes(VH): S/B >~ 1 isolated e and μ: pT > 20 GeV, Z veto

> MET-tagged (Z(vv)H): S/B < 1 (new, not used in 2011) MET tag has high s/B in the high E_T^{miss} > 70 GeV region, complements the lepton tag analysis

>Untagged 4 classes based on |η_γ| and conv/non-conv:
S/B << 1</p>
Construct 2D models for signal and bkg, relying on two observables: (m, $\pi_T^{\gamma\gamma} \equiv p_T^{\gamma\gamma}/m^{\gamma\gamma}$)

Analysis Strategy:

 $p_T(YY)$ has a good discriminant power against the background it's used in addition to m(YY)to model the background

channel	leading photon	trailing photon
dijet-tag	p_T/m >60/120	$p_T > 25 \text{ GeV}$
lepton-tag	$p_T/m>45/120$	$p_T > 25 \text{ GeV}$
MET-tag	$p_T/m>45/120$	$p_T > 25 \text{ GeV}$
untagged	$p_T/m>40/120$	$p_T/m > 30/120$

besides the diphoton selection, a dedicated analysis has been developed to enhance the sensitivity to the FP model

	E_{T}^{miss}	Dijet	Dijet	Lepton	Untagged			
	tag	high m _{jj}	low m _{jj}	tag	(a)	(b)	(c)	(d)
Signal ($m_{\rm H} = 120 {\rm GeV}$)	3.8	21.5	15.3	5.7	29.2	37.9	18.5	22.0
Data (115 $< m_{\gamma\gamma} < 125 \text{GeV}$)	4	20	36	6	683	1712	902	1755
Data (100 $< m_{\gamma\gamma} < 180 \text{GeV}$)	41	84	271	30	4992	9546	5105	8574
σ_{eff} (GeV)	1.91	1.98	2.02	2.0	1.44	2.00	3.72	3.76

we exclude the FP Higgs in almost the entire search range:

95% CL in the mass range 110—147 GeV
 99% CL in the mass range 110—134 GeV

Fermiophobic Higgs \rightarrow γ (2011+2012): p-value and signal strength

p-value:

Signal strength:

The observed state @ ~125 GeV is excluded at 99% CL under the fully-fermiophobic hypothesis.

The excess shows tension with FP signal: best fit signal rate 0.49±0.18

- > CMS made searches sensitive to beyond the minimal Higgs of the Standard Model
- \succ No evidence for non-standard higgs production or decay is found \rightarrow stringent limits set on the production of Higgs boson in several models beyond the SM
- \succ The MSSM Higgs parameter space is being constrained using modes with bbbar, ditau and $\mu\mu$
- The small excess seen in γγ channel does not look like it is due to fermiophobic higgs
- More BSM Higgs search results from 2012 LHC runs are expected soon.