

Searches for tt resonances in ATLAS

Beyond The Standard Model of Particle Physics Rencontres du Vietnam

Reina Camacho Toro LPC-Clermont Ferrand on behalf of the ATLAS collaboration

Beyond The Standard Model of Particle Physics Quy Nhon, Vietnam July 15-21th 2012

Overview

- Motivation
- Benchmark models
- Results in dilepton channel
- Results in lepton+jets channel: resolved and boosted topologies
- Summary

Overview

The Standard Model describes 3 of the 4 interactions between the known fundamental particles with high accuracy

Neither dark matter nor dark energy nature are included Higgs boson?

3

Top quark and new physics

Chrs

Large top mass could hint an intimately connection between the top and beyond the Standard Model (BSM) physics

Many models (e.g. Technicolor, extra dimensions models as Randall Sundrum (RS) or ADD, little Higgs...) predict the existence of new particles that couples preferentially to the top quark

- tt production seems to be a good and natural place to look for new physics
- Others possibilities to keep in mind: forward-backward asymmetry, top polarisation...

Benchmark models

Top pair signatures

CNTS

Top pair signatures: Boosted topology

At high tt mass:

→ Top gets more and more boosted b → Objects (leptons and jets)
merge into monojets

Standard reconstruction methods are no longer sufficient for boosted top quarks

Jet substructure needs to be studied

ATLAS (A Toroidal LHC ApparatuS)

ATLAS consists of a series of concentric sub-detectors around the interaction point

Divided into 4 major parts: the inner detector, the calorimeters, the muon spectrometer and the magnet systems

Good performance for all sub-systems is crucial for tt resonances searches

Analyses overview

÷

Total Integrated Luminosity [fb

All analyses use 2.04 fb⁻¹ of data collected at the beginning of 2011

Three channels:

 Dilepton channel (ee, μμ and eμ): Eur. Phys. J. C, arXiv:1205.5371

Lepton+jets channel (e+jets and μ+jets):

- Resolved topology ATLAS-CONF-2012-029 Eur. Phys. J. C, arXiv:1205.5371
- Boosted topology JHEP, arXiv:1207.2409v1

2011: 5.3 fb⁻¹ @7 TeV 2012: 6.3 fb⁻¹ @8 TeV

Day in 2011

Dilepton channel

Event selection

CNTS

IN2P3

Backgrounds and data vs background expectation

CMrs

IN2P3

Z+jets/Drell-Yan MC normalized in a data control sample orthogonal to the signal sample

W+jets (one fake lepton) and multijet (two fake leptons) estimated from data using a technique called Matrix Method

All other backgrounds are taken from simulation

SM tĪ	~77%
Z+jets	~11%
Single top	~4%
W+jets and Multijet ~3.5%	
Diboson	~3.5%

The hatched areas correspond to the background normalization uncertainty

Discriminant variable

10⁻³ \

CNTS

IN2P3

200

400

Results

CITS IN2P3

No signs of new physics has been found

a Bayesian approach used to set upper limits on σxBR at 95% CL

Yield and shape systematic uncertainties are taken into account in the limit calculation by interpolation between the nominal and the shifted templates with a Gaussian prior

Exclusion: 500<m_{gKK} < 1080 GeV</p>

32 systematic uncertainties

- Each one has an impact <15% in the sensitivity
- Sensitivity degraded by a factor of 3.0 (1.5) at low (high) mass

Shape systematic with biggest impact:

Jet energy scale
ISR/FSR
PDFs

Event selection

Event selection

Chrs

Backgrounds and data vs background expectation

Multijet from data jet-triggered events with high EM fraction. Normalization from fit of MET distribution

W+jets normalization from data based on tagged fractions and on charge asymmetry

All other backgrounds are taken from simulation

SM t Ī	~79.4%
W+jets	~11%
Single top	~4.6%
Multijet	~3.6%
Z+jets	~0.7%
Diboson	~0.2 %

Discriminant variable

Discriminant variable: invariant mass of the reconstructed tt system mass 4(3) jets + lepton + neutrino

Neutrino

- MET identified with neutrino p_{τ}
- p, from quadratic equation imposing W mass constraint

No attempts are made to reconstruct each top

a Use highest p_{τ} jets close to other activity in the event

Results

No significant deviations from the Standard Model

Upper limits on σxBR at 95% CL has been set using the same tools as in the dileptonic analysis

- 32 systematic uncertainties. Shape systematic with biggest impact:
 - b-tagging efficiency
 - Jet energy scale and resolution
 - ISR/FSR

Lepton+jets channel (boosted)

Event selection

ā

Lepton selection similar to previous analysis: exactly 1 isolated lepton. Same criteria for selection and veto

- Electron: $p_{T} > 25$ GeV and $|\eta| < 2.47$
- Muon: $p_{T} > 20$ GeV and $|\eta| < 2.5$
- Mainly QCD background rejection:
 - e channel: MET>25 GeV and $m_{\tau}^{W}>25$ GeV
 - μ channel: MET>20 GeV and MET+m^w>60 GeV

Jet selection driven for the expected boosted topology:

- 1 jet close to the lepton (0.4< Δ R(l,j)<1.5) with $p_T > 30$ GeV to build the leptonic top
- ≥1 "fat" jet anti-k_T R=1.0 back-to-back to the previous jet (ΔR(j,j)>1.5)
 - $p_{T} > 250 \text{ GeV}$
 - Mass >100 GeV
 - $\sqrt{d_{12}} > 40$ GeV (k_T last splitting scale of the jet constituents)

The leading p_T fat jet is taken as the hadronic top candidate

Assume all hadronic top decay products merge

-Turn on ~800 GeV - Acceptance x efficiency degraded for >2 TeV due to lepton isolation

Backgrounds and data vs background expectation

Multijet estimated from data using a technique called Matrix Method. Exploiting control region with low-quality leptons

W+jets normalization from data based on tagged fractions and on charge asymmetry.

All other backgrounds are taken from simulation

SM tī	~62%
W+jets	~27%
Z+jets	~4%
Multijet	~4%
Single top	~2.6 %
Diboson	~0.5%

Discriminant variable

CINIC

IN2P3

Results

No significant deviations from the Standard Model observed

Bayesian approach also used to set upper limits on σxBR at 95% CL

- 30 systematic uncertainties. Shape systematic with biggest impact:
 - Jet energy and mass scale
 - Jet energy and mass resolution
 - ISR/FSR

Summary (I)

So far, the search for a tt resonance done in ATLAS does not show any evidence of a new physics signal

Limits on the mass for the leptophobic topcolor Z' model and KK gluon were set

```
Exclusion (2.05 fb<sup>-1</sup> @7 TeV):
m<sub>z'</sub> < 1.15 TeV</li>
m<sub>gKK</sub> < 1.5 TeV</li>
```

Expected g_{KK} limit @ 600 GeV Dilepton: 11.3 pb Semileptonic resolved: 6.0 pb Semileptonic boosted: -

Expected g_{KK} limit @ 1.6 TeV Dilepton: 2.8 pb Semileptonic resolved: 0.68 pb Semileptonic boosted: 0.40 pb

ATLAS analyses provide complementary sensitivity along the tt mass spectra

Summary (II)

Efforts between groups to develop orthogonal and more sophisticated analyses, that can be easily combined. In particular between resolved and boosted topologies

New BSM signals to be tested

Looking forward for results with the whole 2011 and 2012 data, which will allow to have access to a higher mass regime

Backup

Comparison: ATLAS and CMS

MC generators used

SM top-antitop:

- MC@NLO+HERWIG/JIMMY, CTEQ6.6, reweighted to MSTW2088nlo
- Approximated NNLO cross-section: 165 pb
- POWHEG+HERWIG/JIMMY and POWHEG+PYTHIA for systematics
- AcerMC for ISR and FSR variations

Single top:

- MC@NLO+HERWIG/JIMM, CTEQ6.6, reweighted to MSTW2088nlo
- Approximated NNLO cross-section: 65 pb (t-channel), 4.6 pb (s-channel), 15.7 pb (Wt-channel)

W/Z+jets:

- ALPGEN+HERWIG/JIMMY in parton multiplicity bins up to 5, CTEQ6L1
- Normalized to the NNLO cross sections

Diboson:

- HERWIG/JIMMY, MRST2007LO*
- ****

■ Z':

- PYTHIA, CTEQ6L1
- Normalized to the NLO cross sections

gKK:

- MADGRAPH+PYTHIA, CTEQ6L1
- LO cross sections

CNrs

References

Tested models:

- **g**_{κκ} arXiv:hep-ph/0612015v1
 - arXiv:hep-ph/0701166v1
- Z' arXiv:hep-ph/941142 arXiv:hep-ph/9911288v1

tt resonances search at ATLAS @7 TeV:

 Dilepton channel (ee, μμ and eμ): 1.04/fb ATLAS-CONF-2011-123
2.04/fb Eur. Phys. J. C, arXiv:1205.5371

Lepton+jets channel resolved (e+jets and μ+jets): 200/pb ATLAS-CONF-2011-087 2.04/fb ATLAS-CONF-2012-029 Eur. Phys. J. C, arXiv:1205.5371

Lepton+jets channel boosted (e+jets and μ+jets): 2.04/fb JHEP, arXiv:1207.2409v1

Statistical tools:

BumpHunter arXiv:1101.0390 [physics.data-an].

DØ Collaboration, I. Bertram et al., A Recipe for the construction of confidence limits, FERMILAB-TM-2104, Fermilab, 2000.

Matrix Method: Multijet estimation

Standard Model of Particle Physics 2012 Ę 15-2 Vietnam July Beyond The S Quy Nhon, Vi

GEORG-AUGUST-UNIVERSITÄT

Matrix Method

Implementation of the Matrix Method:

- Define two samples N_{loose} and N_{tight} upon data with respect to a particular applied cut (here: muon isolation cut) → N_{tight} ⊂ N_{loose}:
- Determine signal and fake efficiencies.
- Solve matrix equation to obtain NFAKE:

$$\begin{pmatrix} \mathsf{N}_{\mathsf{loose}} &= \mathsf{N}^{\mathsf{SIG}} + \mathsf{N}^{\mathsf{FAKE}} \\ \mathsf{N}_{\mathsf{tight}} &= \epsilon^{\mathsf{SIG}} \mathsf{N}^{\mathsf{SIG}} + \epsilon^{\mathsf{FAKE}} \mathsf{N}^{\mathsf{FAKE}} \end{pmatrix} \Longrightarrow \begin{pmatrix} \mathsf{N}_{\mathsf{loose}} \\ \mathsf{N}_{\mathsf{tight}} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \epsilon^{\mathsf{SIG}} & \epsilon^{\mathsf{FAKE}} \end{pmatrix} \begin{pmatrix} \mathsf{N}^{\mathsf{SIG}} \\ \mathsf{N}^{\mathsf{FAKE}} \end{pmatrix}$$

Here:

- Loose selection: TopCommon selection without muon isolation.
- Tight selection: Loose + muon (etcone30 < 4 GeV & ptcone30 < 4 GeV).
- Determine ϵ^{SIG} with Z $\rightarrow \mu\mu$ Tag & Probe method.
- Determine ϵ^{FAKE} in low $M_T(W)$ and high d_0 significance control region.

W+jets data-driven normalization

AT LAS S COLS INZEROSE INZEROSE Heavy flavour fraction determined from data based on the tagged fraction in W+2 jets events.

Normalization factors determined from data based on the charge asymmetry for each jet multiplicity bin using the ratio: $r_{MC} = N_{W+}/N_{W-}$ from the simulation.

$$N_{W^+} + N_{W^-} = \left(\frac{r_{MC} + 1}{r_{MC} - 1}\right)(N_{W^+} - N_{W^-})$$

Conservative uncertainty applied to the normalization, since this estimate is still preliminary.

Z+jets data-driven normalization

Particle Physics 2012 **Standard Model of** 15 Vietnam July **Beyond The** Quy Nhon,

CINIS

Scale factors (ratio of data and MC events in the control region) used to extrapolate data to MC differences measured in the CR into the SR

Lepton+jets channel resolved: tt mass reconstruction

tt mass=4(3) jets + lepton + neutrino

- Neutrino
 - \clubsuit MET identified with neutrino $\textbf{p}_{_{\rm T}}$
 - p_z from quadratic equation imposing W mass constraint $\frac{b}{2}$ 1500
- No attempts to reconstruct each top is done

Two different reconstruction methods used whether or not there is a jet with mass > 60 GeV in the event:

In case there is not:

Jets compatible with ISR excluded (far from other objects)

Select 4 leading p_{T} jets

Reject jet if minimal distance to other selected jets dRmin>2.5 - 0.015 mjet

- Iterate if 4 or more jets remain
- Selected 4(3) jets added to leptonic W

In case there is:

Built top hadronic with closest jet to the massive one

Built leptonic top with the closest jet to the lepton

Allows to take into account events with significant boosted top quarks. This subsample represents 0.3% of the total

This analysis can be considered as a semiboosted one

Lepton+jets channel resolved: tt mass reconstruction

CNTS

IN2P3

Dilepton channel: tt mass reconstruction

Dilepton channel: Data vs background expectation

Lepton plus jets channel resolved: Data vs background expectation

Lepton plus jets channel boosted: Data vs background expectation

tt resonance @parton level

Width resonance effect

ATL-COM-PHYS-2010-153

- Tail toward lower mass
- Due to the convolution of the quark PDF and the g_{KK} Breit-Wigner distribution
- Effect is more evident for higher masses

This effect is combined with the detector resolution

Destructive interference between SM processes and strongly coupled resonances leads to a reduction of the low mass tail

Interference is not simulated in present studies since the SM bkg and signals are generated separately