

# $B \rightarrow D^{(*)}\tau v$ and $B \rightarrow \tau v$ in BaBar

Fabrizio Bianchi
University of Torino and INFN-Torino



Rencontres du Vietnam
Beyond The Standard Model of Particle Physics
Qui Nhon, Vietnam July 15-21, 2012



### Introduction

- B  $\rightarrow$  D<sup>(\*)</sup> $\tau$  v and B  $\rightarrow$   $\tau$  v decays are of particular interest to test the predictions of the Standard Model and to search for New Physics effects.
- The analyses presented in this talk use the full BaBar data set of  $4.7 \times 10^6$  BB pairs.
- Both analyses take advantage of the B tagging method.

# B Tagging Method

- Difficult signal signature:
  - Many neutrinos in final state.
  - Lack of kinematical constraints.
- Reconstruction of companion B in semileptonic or hadronic decay modes improve background rejection.
- Look for signal in the rest of the event
  - Expect to find nothing more than visible signal decay products.
  - No additional track or activity in the calorimeter.





# Ratio of B $\rightarrow$ D<sup>(\*)</sup> $\tau$ v vs B $\rightarrow$ D<sup>(\*)</sup> I v Decays

- Semileptonic decays with a τ have an additional helicity amplitude.
- For  $B \rightarrow D^*\tau \nu$ :

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[ \left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} |H_{0t}|^2 \right]$$

- Only  $H_{00}$  and  $H_{0t}$  contributes to  $B \rightarrow D\tau \nu$
- To test standard model prediction we measure:

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau\nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)} \qquad \ell = e, \mu$$

- Several experimental and theoretical uncertainties cancel in the ratio
- Sensitive to contribution from new physics
- For example to charged Higgs

# Analysis Strategy

- Full reconstruction of  $B_{tag}$  in its hadronic decays.
  - B<sub>tag</sub> efficiency improved and extended to low momentum.
- In the rest of the event:
  - Identify an e or a  $\mu$ 
    - from  $\tau$  decay in the B  $\rightarrow$  D(\*) $\tau$   $\nu$  signal sample
    - Directly from B decay in the B  $\to$  D(\*)I  $\nu$  (I=e, $\mu$ ) normalization sample
  - Reconstruct a D candidate  $(D^{*0}, D^{*+}, D^{0}, D^{+})$ .
  - No additional reconstructed tracks
  - Kinematical requirement:  $q^2 > 4 \text{ GeV}^2$
  - Use BDT to suppress background (combinatorial and  $D^**Iv$ )
- Unbinned Maximum Likelihood Fit to extract event yields.

### Extraction of Yields from M.L. Fit

#### 2D Unbinned M.L. fit to:

- Missing Mass sq:  $m_{miss}^2 = (P_{ee} P_{Btag} P_{D(*)} P_{\ell})^2$ Lepton momentum in B rest frame:  $p_{\ell}^*$ 4 signal samples D°I, D\*I, D\*I, D\*I, (e<sup>±</sup> or  $\mu^{\pm}$ )

- 4  $D^{(*)} \pi^0 Iv$  Control samples
- PDFs from MC (approximated using Keys fct.)



- 4 D<sup>(\*)</sup> τν Signal
- 4 D(\*) Iv Normalization
- 4 D\*\* Iv Backgrounds

#### Fixed Backgrounds

- B<sup>0</sup>-B<sup>+</sup> cross feed
- BB combinatorial BG
- Continuum  $e^+e^- \rightarrow f f(\gamma)$





MC Simulation



## Results of Fit: $B \rightarrow D^* \tau v$

#### Isospin constrained

|                         | $D^{*0}\tau\nu$   | $D^{*+}\tau\nu$   | $D^*\tau\nu$      |
|-------------------------|-------------------|-------------------|-------------------|
| $N_{ m sig}$            | $639 \pm 62$      | $245 \pm 27$      | $888 \pm 63$      |
| Significance $(\sigma)$ | 11.3              | 11.6              | 16.4              |
| $R(D^*)$                | $0.322 \pm 0.032$ | $0.355 \pm 0.039$ | $0.332 \pm 0.024$ |

#### **Statistical** errors only







### Results of Fit: B → Dτv

#### Isospin constrained

|                         | $D^0	au u$        | $D^+ 	au  u$      | $D\tau\nu$        |
|-------------------------|-------------------|-------------------|-------------------|
| $N_{ m sig}$            | $314 \pm 60$      | $177 \pm 31$      | $489 \pm 63$      |
| Significance $(\sigma)$ | 5.5               | 6.1               | 8.4               |
| R(D)                    | $0.429 \pm 0.082$ | $0.469 \pm 0.084$ | $0.440 \pm 0.058$ |

F. Bianchi

**Statistical** errors only





# Systematic Uncertainties

 $\rho$  Correlation between R(D) and R(D\*)

#### Principal Uncertainties:

- D\*\*I v: conservative 15%
   constraints and fit to Dπ sample,
- Limited MC signal samples
   2-dim PDFs with ~2000 events per bin
- Continuum and BB background
   Corrections and MC statistics

| Source                                         | Uncertainty (%) |          |         |
|------------------------------------------------|-----------------|----------|---------|
| Source                                         | R(D)            | $R(D^*)$ | ρ       |
| $D^{**}\ell\nu$ background                     | 5.8             | 3.7      | 0.62    |
| MC statistics                                  | 5.0             | 2.5      | -0.48   |
| Cont. and $B\overline{B}$ bkg.                 | 4.9             | 2.7      | -0.30   |
| $\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$ | 2.6             | 1.6      | 0.22    |
| Systematic uncertainty                         | 9.5             | 5.3      | 0.05    |
| Statistical uncertainty                        | 13.1            | 7.1      | -0.45   |
| Total uncertainty                              | 16.2            | 9.0      | (-0.27) |

Largest systematic errors are Gaussian

distributed! Results of fit to D\*\*I  $\nu$  control sample for the sum of the 4 channels:  $D^0\pi^0|\nu$ ,  $D^{*0}\pi^0|\nu$ ,  $D^{*0}\pi^0|\nu$ ,  $D^{*+}\pi^+|\nu$ 





# Summary of R(D) and $R(D^*)$ Measurements

| Decay                                 | $N_{ m sig}$ | $N_{ m norm}$   | $R(D^{(*)})$                | $\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$ | $\Sigma_{\mathrm{tot}}(\sigma)$ |
|---------------------------------------|--------------|-----------------|-----------------------------|--------------------------------------------|---------------------------------|
| $D^0 	au^- \overline{ u}_	au$         | $314 \pm 60$ | $1995 \pm 55$   | $0.429 \pm 0.082 \pm 0.052$ | $0.99 \pm 0.19 \pm 0.13$                   | 4.7                             |
| $D^{*0} 	au^- \overline{ u}_	au$      | $639 \pm 62$ | $8766 \pm 104$  | $0.322\pm0.032\pm0.022$     | $1.71 \pm 0.17 \pm 0.13$                   | 9.4                             |
| $D^+ 	au^- \overline{ u}_	au$         | $177 \pm 31$ | $986 \pm 35$    | $0.469 \pm 0.084 \pm 0.053$ | $1.01 \pm 0.18 \pm 0.12$                   | 5.2                             |
| $D^{*+}\tau^{-}\overline{\nu}_{\tau}$ | $245\pm27$   | $3186\pm61$     | $0.355 \pm 0.039 \pm 0.021$ | $1.74\pm0.19\pm0.12$                       | 10.4<br>6.8                     |
| $D	au^-\overline{ u}_	au$             | $489 \pm 63$ | $2981 \pm 65$   | $0.440 \pm 0.058 \pm 0.042$ | $1.02 \pm 0.13 \pm 0.11$                   | 6.8                             |
| $D^*\tau^-\overline{\nu}_{\tau}$      | $888 \pm 63$ | $11953 \pm 122$ | $0.332 \pm 0.024 \pm 0.018$ | $1.76\pm0.13\pm0.12$                       | 13.2                            |

R(D\*)

#### Comparison with SM calculation:

|            | R(D)              | R(D*)         |
|------------|-------------------|---------------|
| BABAR      | $0.440 \pm 0.071$ | 0.332 ± 0.029 |
| SM         | $0.297 \pm 0.017$ | 0.252 ± 0.003 |
| Difference | 2.0 σ             | 2.7 σ         |

The combination of the two measurements (-0.27 correlation) yields  $\chi^2/NDF=14.6/2$ , i.e. Prob. = 6.9  $\times 10^{-4}$ !!

Thus the SM prediction is excluded at  $3.4 \sigma$ 

BABAR



### Comparison to Previous Measurements

NB: Average does not include this measurement



The new measurements are fully compatible with earlier results!

### Can we explain the excess events?

• A charged Higgs (2HDM type II) of spin 0 coupled to the  $\tau$  will only affect H<sub>t</sub>

$$H_t^{
m 2HDM} = H_t^{
m SM} imes \left(1 + \frac{ an^2 eta}{m_{H^\pm}^2} \frac{q^2}{1 \mp m_c/m_b} 
ight)$$
 - for DTV + for D\* $au$ V

This could enhance or decrease the ratios  $R(D^*)$  depending on  $tan\beta/m_H$ 

- We estimate the effect of 2DHM, accounting for difference in efficiency, and its uncertainty.
- The data match 2DHM Type II at  $tan\beta/m_H = 0.44 \pm 0.02$  for R(D)  $tan\beta/m_H = 0.75 \pm 0.04$  for R(D\*)
- However, the combination of R(D) and  $R(D^*)$  excludes the Type II 2HDM in the full  $tan\beta-m_H$  parameter space with a probability of >99.8%, provided  $M_H$ >10GeV!



#### arXiv:1207.0698 [hep-ex], submitted to Phys.Rev.D RC

$$B \rightarrow \tau \nu$$



# Leptonic B Decays

• B  $\rightarrow$ Iv decays are very clean theoretically. The only uncertainties are in the B decay constant  $f_B$  and in  $|V_{ub}|$ .

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

• Interesting probe of physics beyond the SM, since also a charged Higgs can mediate the decay.

$$\mathcal{B}(B \to l \nu)_{2HDM} = \mathcal{B}(B \to l \nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2$$

- $B \rightarrow \mu \nu$  and  $B \rightarrow e \nu$  are out of reach at B Factories.
- B $\rightarrow \tau v$  measurements are already excluding regions of the  $m_H$  tanß plane.

# Analysis Strategy

- Full reconstruction of  $B_{tag}$  in its hadronic decays.
- In the rest of the event:
  - "Reconstruct"  $\tau$  from  $\tau$  -> e,  $\mu$ ,  $\pi$ ,  $\rho$  v decays (72% of  $\tau$  BF).
    - Two or more neutrinos in the event.
    - Only a single charged track.
    - No residual energy in the calorimeter.
- $E_{extra}$  is the most powerful discriminating variable.
  - Defined as the total energy of clusters passing a minimum energy requirement.
  - Eextra distribution validated with the use of double-tagged events.
- Maximum Likelihood Fit to  $E_{\rm extra}$  distribution to extract branching fraction.

## Extraction of BF from M.L. Fit

- Simultaneous fit to  $E_{\text{extra}}$  of the four  $\tau$  modes, constrained to the same BF.
- Signal PDF taken from signal MC and corrected for data/MC disagreement
  - Correction for mismodeling of detector effect on  $E_{\rm extra}$  evaluated by comparing data sidebands and background MC.
- Background PDF from
  - data sidebands (combinatory/background)
  - B+B-MC (peak. component only)

# Result of the Fit: B->TV

• Fit to  $E_{\rm extra}$  distribution show an excess of events consistent with null hypothesis at 3.3  $\sigma$  only.

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.83^{+0.53}_{-0.49}(\text{stat.}) \pm 0.24(\text{syst.})) \times 10^{-4}$$











# Systematic Uncertainties

#### Dominant systematics:

- Background E<sub>extra</sub> PDF
- Tagged B efficiency
- $-\mu$  identification

| Source of systematics   | B uncertainty (%) |
|-------------------------|-------------------|
| Additive                |                   |
| Background PDF          | 10                |
| Signal PDF              | 2.6               |
| Multiplicative          |                   |
| Tag-B efficiency        | 5.0               |
| B counting              | 1.1               |
| Electron identification | 2.6               |
| Muon identification     | 4.7               |
| Kaon identification     | 0.4               |
| Tracking                | 0.5               |
| MC statistics           | 0.6               |
| Total                   | 13                |
|                         |                   |

### Comparison with Previous Measurements

| Experimen | nt Tag       | Branching Fraction ( $\times 10^{-4}$ ) |
|-----------|--------------|-----------------------------------------|
| BABAR     | hadronic     | $1.8^{+0.9}_{-0.8} \pm 0.4 \pm 0.2$     |
| BABAR     | semileptonic | $1.7 \pm 0.8 \pm 0.2$                   |
| Belle     | hadronic     | $1.79^{+0.56}_{-0.49}^{+0.46}_{-0.51}$  |
| Belle     | semileptonic | $1.54^{+0.38}_{-0.37}^{+0.29}_{-0.31}$  |

$$\mathcal{B}(B^+ \to \tau^+ \nu) = (1.83^{+0.53}_{-0.49}(\text{stat.}) \pm 0.24(\text{syst.})) \times 10^{-4}$$

This measurement exceeds SM predictions determined using exclusive (inclusive)  $|V_{ub}|$  measurement by 2.4 (1.6)  $\sigma$ .

### Breaking News from Belle at ICHEP:

$$\mathcal{B}(B \to \tau \nu) = (0.72^{+0.27}_{-0.25}(\text{stat.}) \pm 0.11(\text{syst.})) \times 10^{-4}$$

# Comparison with 2HDM type II

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2$$



# Constraints on the tanß vs $m_{H^+}$ plane in 2HDM type II

- Most of the parameter space of 2HDM is excluded at 90% C.L., if we use exclusive |Vub| determination.
- 90% C.L. exclusion for  $m_{H^+}$  up to 1 TeV at very high tan  $\beta$  (>70) using inclusive |Vub|





### Conclusions

- Improved measurement of the ratio of the  $B \rightarrow D^{(*)} \tau v$  branching fraction to  $B \rightarrow D^{(*)} l v$  branching fraction.
  - There is a significant excess (3.4  $\sigma$ ) of events in B $\to$ D $\tau\nu$  and B $\to$ D\* $\tau\nu$  compared to the SM prediction.
  - The combination of R(D) and R(D\*) excludes the Type II 2HDM in the full  $tan\beta-m_H$  parameter space.
- Measurement of  $B \rightarrow \tau \nu$  with hadronic tag using the full BaBar dataset.
  - Some tension with the SM (2.4  $\sigma$ ) when using exclusive  $|V_{ub}|$  determination.
- More statistics is necessary to further investigate these decay modes.
  - We need a Super B Factory !!!

# Backup

# Hadronic and Semileptonic Tags

#### Semileptonic B decays

- $-B \rightarrow D^* | v$
- PRO: Higher efficiency  $\epsilon_{tag} \sim 1.5\%$
- CON: more backgrounds, B momentum unmeasured

#### Hadronic B decays with charm

- B+→ $D^{(*)0}X^+$  or B<sup>0</sup> → $D^{(*)}^+X^-$
- X is a charged system of hadrons among  $(\pi, K, \pi^0, K_s)$  up to 5 charged particles and 2 neutrals
- PRO: cleaner events, B momentum reconstructed
- CON: smaller efficiency  $\epsilon_{tag} \sim 0.15\%$



# Hadronic and Semileptonic Tags

- Semileptonic B decays
  - Recontruct the D-I pair (Y)
  - Kinematics and known B meson energy determine the angle between B and Y.
- Hadronic B decays with charm
  - Full reconstruction of the B decay chain.
  - Requirements on the quality of the tag are analysis dependent
  - Separate the misreconstructed tags from correct (peaking) tags in
     F. Bianchdata

$$\cos\theta_{B,Y} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2|\vec{p}_B||\vec{p}_Y|}$$



$$m_{\rm ES} = \sqrt{s/4 - p_B^2}$$

