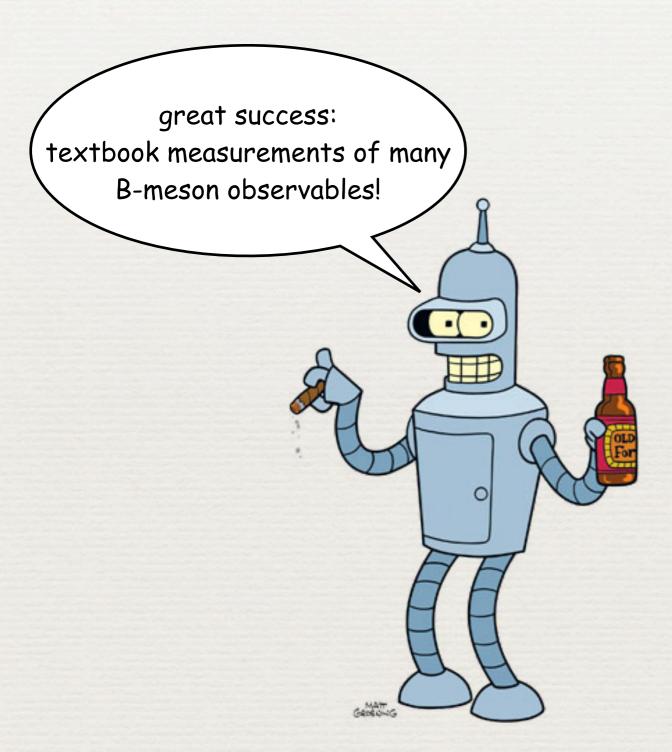
Review on New Physics in Heavy Flavors: B-Meson Sector

Ulrich Haisch University of Oxford

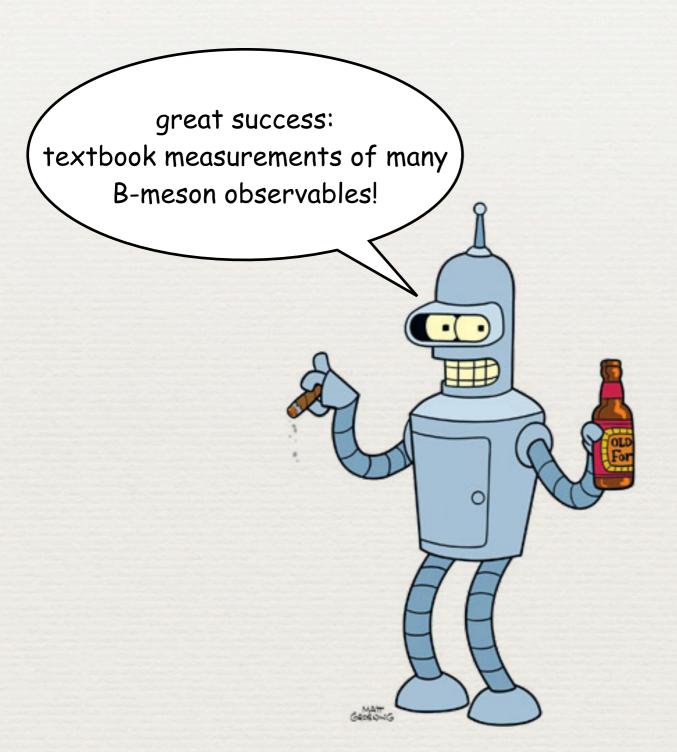
> Recontres du Vietnam, Quy Nhon, Vietnam, 15 - 21 July 2012

Score After 1fb⁻¹ of LHCb Data

Score After 1fb⁻¹ of LHCb Data



Score After 1fb-1 of LHCb Data

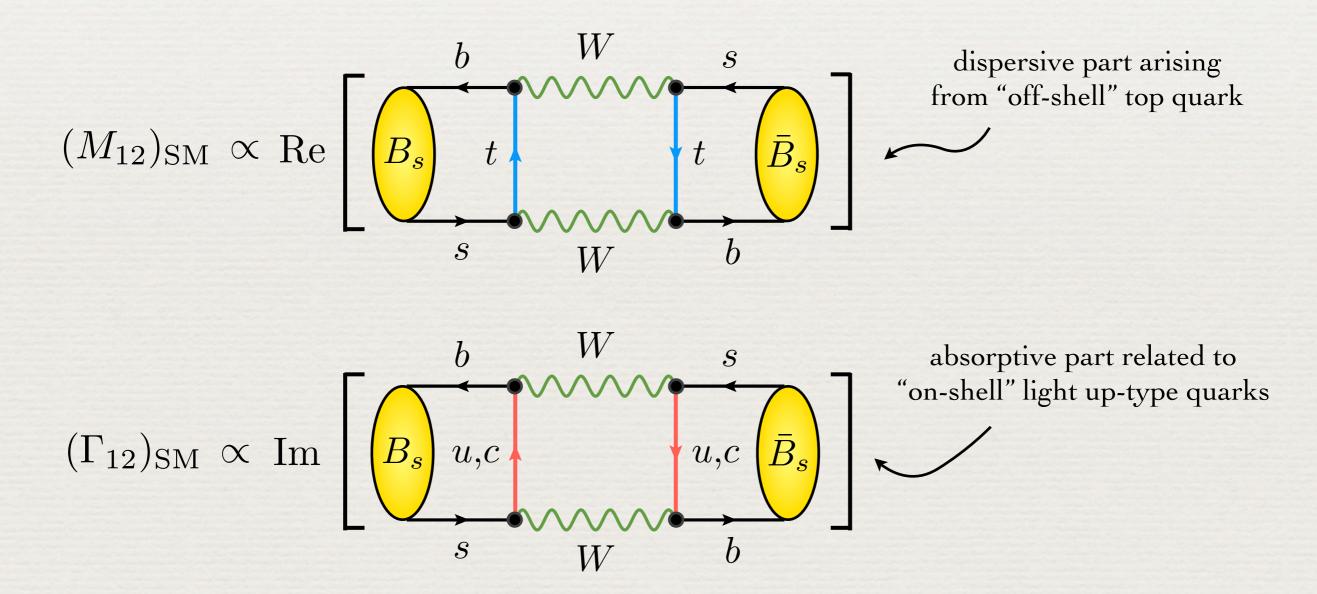


big disappointment:
where the @*#\$ are the
signals of new physics?!

B-Meson Mixing

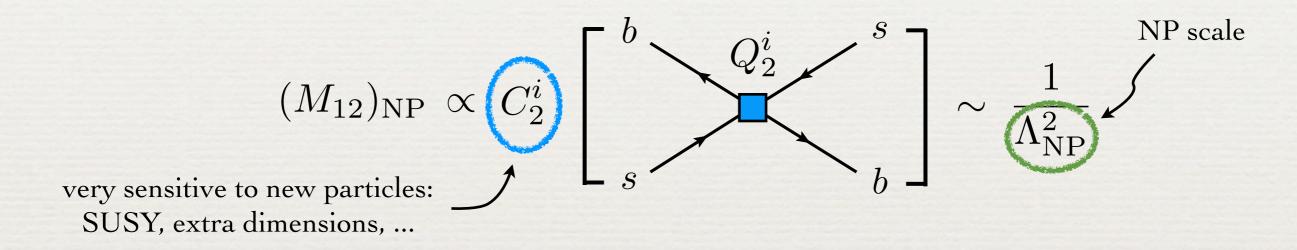
Standard Model & Beyond

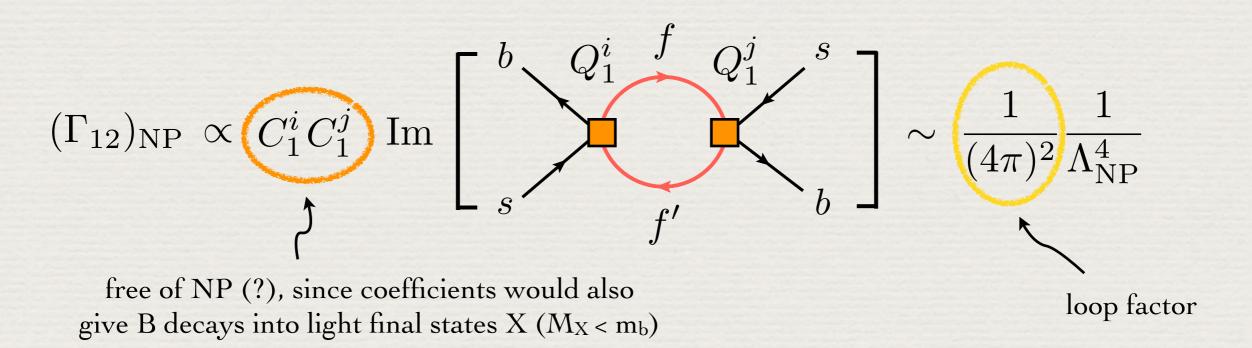
■ $B_s-\bar{B}_s$ oscillations encoded in elements M_{12} & Γ_{12} of hermitian mass & decay rate matrices (CPT $\Rightarrow M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$). In Standard Model (SM) leading effects due to electroweak box diagrams:



Standard Model & Beyond

Generic, sufficiently heavy new physics (NP) in M_{12} (Γ_{12}) can be described via effective $\Delta B = 2$ ($\Delta B = 1$) interactions:





Parameters & Observables

Model-independent parametrization of NP effects in B_s system:

$$M_{12} = (M_{12})_{SM} + (M_{12})_{NP} = (M_{12})_{SM} R_M e^{i\phi_M},$$

$$\Gamma_{12} = (\Gamma_{12})_{SM} + (\Gamma_{12})_{NP} = (\Gamma_{12})_{SM} R_{\Gamma} e^{i\phi_{\Gamma}}$$

Expressed through R_{M,Γ}, $\phi_{M,\Gamma}$ & $(\phi_s)_{SM} = arg(-(M_{12})_{SM}/(\Gamma_{12})_{SM})$, mass ΔM & width difference $\Delta \Gamma$, flavor-specific (e.g. semileptonic) CP asymmetry a_{fs}^s & CP-violating (CPV) phase $\phi_{\psi\phi}$ take form

$$\Delta M = (\Delta M)_{\rm SM} R_M, \quad \Delta \Gamma \approx (\Delta \Gamma)_{\rm SM} R_{\Gamma} \cos(\phi_M - \phi_{\Gamma}),$$

$$a_{fs}^s \approx (a_{fs}^s)_{\text{SM}} \frac{R_{\Gamma}}{R_M} \frac{\sin(\phi_M - \phi_{\Gamma})}{(\phi_s)_{\text{SM}}}, \quad \phi_{\psi\phi} = (\phi_{\psi\phi})_{\text{SM}} + \phi_M$$

$$\phi_{\psi\phi} = (\phi_{\psi\phi})_{\rm SM} + \phi_M$$

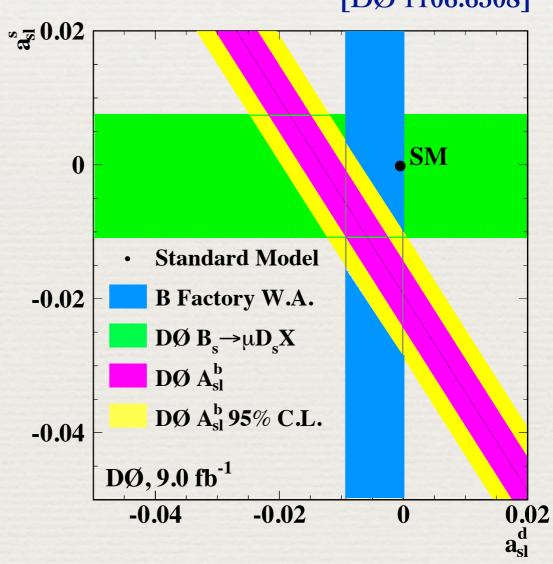
Parameters & Observables

Besides $\phi_{\psi\phi}$ (from mixed-induced, time-dependent CP asymmetry in $B_s \to \psi\phi$) & a_{fs}^s (from tree-level $B_s \to \mu^+ D_s^- X$ decay), there is a 3rd relevant CPV quantity in B sector, i.e., like-sign dimuon charge asymmetry A_{SL}^b :

$$(A_{SL}^b) = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

$$= C_d [a_{fs}^d] + (1 - C_d) [a_{fs}^s],$$

 $N_b^{\pm\pm} = \# \text{ of events with } \mu^{\pm}\mu^{\pm},$ $C_d \approx [0.5, 0.6] \propto \text{ production } B_d/B_s$



SM Predictions vs. Data

	SM predictions [Lenz & Nierste, 1106.6308]	data before 2011	data at present
ΔM [ps ⁻¹]	17.3 ± 2.6	17.70 ± 0.08 [CDF]	17.73 ± 0.05 [CDF & LHСЬ]
$\Delta\Gamma$ [ps ⁻¹]	0.087 ± 0.021	$0.154^{+0.054}_{-0.070}$ (0.9 σ) [CDF & DØ]	0.116 ± 0.019 (1.0 σ) [LHCb]
φ _{ψφ} [°]	-2.1 ± 0.1	-44^{+17}_{-21} (2.3 σ) [CDF & DØ]	-0.11 ± 5.0 [LHСЬ]
A _{SL} [10-4]	-2.1 ± 0.4	$-85 \pm 28 (3.0\sigma)$ [DØ]	$-79 \pm 20 (3.9\sigma)$ [DØ]
afs [10-5]†	1.9 ± 0.3	$-1200 \pm 700 \ (1.7\sigma)$	$-1300 \pm 800 (1.5\sigma)$

[†]calculated from measured A_{SL}^b & $a_{fs}^s = (-4.7 \pm 4.6) \times 10^{-3}$ from BaBar & Belle [HFAG, 1010.1589]

Implications of Present Data Set

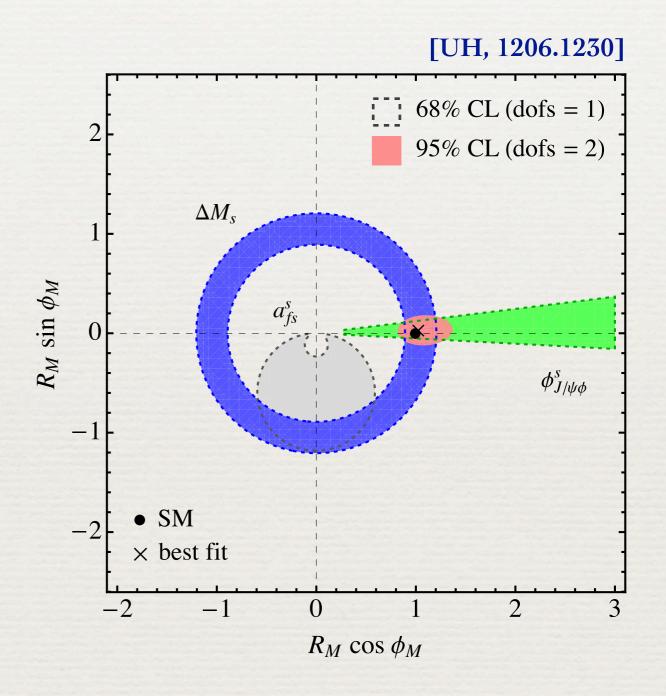
For $(M_{12})_{NP} \neq 0$, $(\Gamma_{12})_{NP} = 0$, fit to new data only slightly better than SM hypothesis ($\chi^2/\text{dofs} = 3.4/2 \text{ vs. } \chi^2/\text{dofs} = 3.5/2$)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, for NP in M₁₂ only & $a_{fs}^d = (a_{fs}^d)_{SM}$, A_{SL}^b measurement implies:

$$S_{\psi\phi} = \sin \phi_{\psi\phi} = -2.5 \pm 1.3$$

[see e.g. Dobrescu, Fox & Martin, 1005.4238; Ligeti et al., 1006.0432; ...]



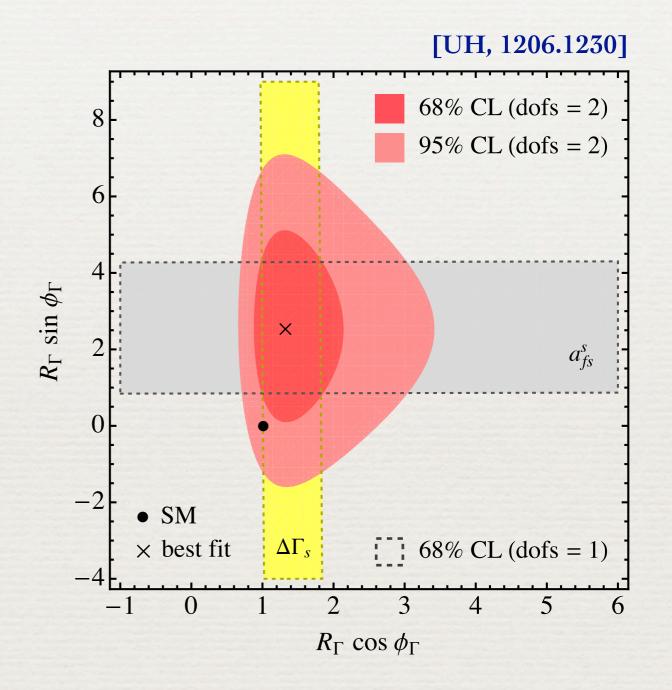
Implications of Present Data Set

For $(M_{12})_{NP} \neq 0$, $(\Gamma_{12})_{NP} = 0$, fit to new data only slightly better than SM hypothesis ($\chi^2/\text{dofs} = 3.4/2 \text{ vs. } \chi^2/\text{dofs} = 3.5/2$)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, scenario with NP in Γ_{12} only, allows for significantly better fit ($\chi^2/\text{dofs} = 0.2/2$) than M_{12} -only assumption

[Bobeth & UH, 1109.1826]



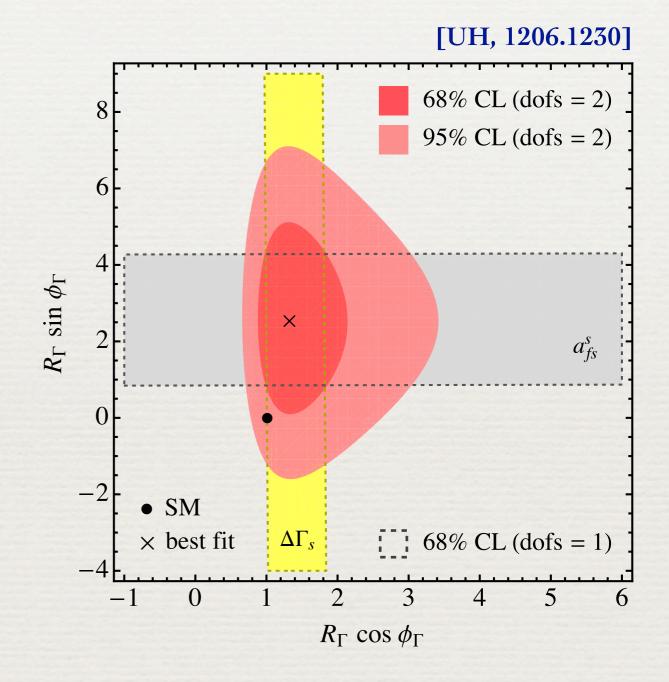
Implications of Present Data Set

For $(M_{12})_{NP} \neq 0$, $(\Gamma_{12})_{NP} = 0$, fit to new data only slightly better than SM hypothesis ($\chi^2/\text{dofs} = 3.4/2 \text{ vs. } \chi^2/\text{dofs} = 3.5/2$)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, scenario with NP in Γ_{12} only, allows for significantly better fit ($\chi^2/\text{dofs} = 0.2/2$) than M_{12} -only assumption

[Bobeth & UH, 1109.1826]



Given latter result, worthwhile to ask: how big can NP in Γ_{12} be?

NP in Γ_{12} : ($\bar{s}b$)($\bar{\tau}\tau$) Operators

While any operator ($\bar{s}b$)f with f leading to flavor-neutral final state of 2 or more fields & mass less than m_b can alter Γ_{12} , possible f's in practice limited, because $B_s \to f$ & $B_d \to X_s f$ modes involving light states in final state strongly constrained. A exception are B decays to tau pairs

```
[see e.g. Dighe, Kundu & Nandi, 0705.4547, 1005.1629; Bauer & Dunn, 1006.1629; Alok, Baek & London, 1010.1333; Kim, Seo & Shin, 1010.5123; Bobeth & UH, 1109.1826; ...]
```

NP in Γ_{12} : ($\bar{s}b$)($\bar{\tau}\tau$) Operators

- While any operator ($\bar{s}b$)f with f leading to flavor-neutral final state of 2 or more fields & mass less than m_b can alter Γ_{12} , possible f's in practice limited, because $B_s \to f$ & $B_d \to X_s f$ modes involving light states in final state strongly constrained. A exception are B decays to tau pairs
- Can study size of NP in Γ_{12} using an effective theory containing a complete set of $(\bar{s}b)(\tau\bar{\tau})$ operators (A, B = L, R):

$$\mathcal{L}_{\text{eff}}^{\text{NP}} = \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i Q_i , \qquad Q_{S,AB} = (\bar{s} P_A b)(\bar{\tau} P_B \tau) ,$$

$$Q_{V,AB} = (\bar{s} \gamma_\mu P_A b)(\bar{\tau} \gamma^\mu P_B \tau) ,$$

$$Q_{V,AB} = (\bar{s} \sigma_{\mu\nu} P_A b)(\bar{\tau} \sigma^{\mu\nu} P_A \tau) ,$$

$$Q_{T,A} = (\bar{s} \sigma_{\mu\nu} P_A b)(\bar{\tau} \sigma^{\mu\nu} P_A \tau) ,$$

NP in Γ_{12} : $(\bar{s}b)(\bar{\tau}\tau)$ Operators

Assuming single operator dominance, calculation of

$$(\Gamma_{12})_{\mathrm{NP}} \propto C_i C_j \mathrm{Im} \left[\begin{array}{c} b & Q_i & \tau & Q_j \\ s & \tau & \end{array} \right]$$

translates into

$$(R_{\Gamma})_{S,AB} < 1 + (0.4 \pm 0.1) |C_{S,AB}|^2$$
,
 $(R_{\Gamma})_{V,AB} < 1 + (0.4 \pm 0.1) |C_{V,AB}|^2$,
 $(R_{\Gamma})_{T,A} < 1 + (0.9 \pm 0.2) |C_{T,A}|^2$

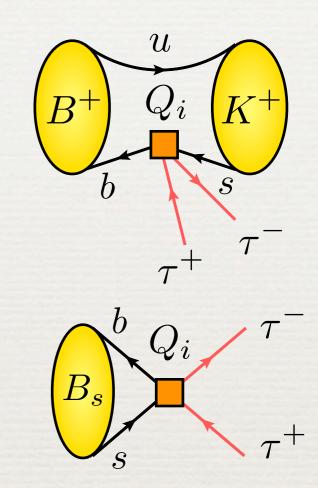
which implies that C_i's have to be around 1 (i.e., size of leading SM current-current coefficient) or larger to describe data well

Bounds on (s̄b)(τ̄τ) Operators

Direct constraints arise from

► Br(B_s
$$\rightarrow \tau^+\tau^-$$
) $\leq 3\%$, Br(B $\rightarrow X_s\tau^+\tau^-$) $\leq 2.5\%$

[see e.g. Grossman, Ligeti & Nardi, hep-ph/9607473; Dighe, Kundu & Nandi, 1005.4051; Bobeth & UH, 1109.1826]



Bounds on purely leptonic & inclusive semileptonic Br's from $B_{d,s}$ lifetime ratio & contamination of $b \rightarrow clv$ decays. LEP searches of $B \rightarrow X + E_{miss}$ & charm counting of comparable strength

Indirect constraints from $b \rightarrow s\gamma$, l⁺l⁻ relevant for tensor operators

Upper Bounds on Wilson Coefficients

	limit on C _i (m _b)	limit on Λ_{NP} for $C_i^{\Lambda} = 1$	process
S, AB	< 0.5	2.0 TeV	$B_s \rightarrow \tau^+\tau^-$
V, AB	< 0.8	1.0 TeV	$B^+ \rightarrow K^+ \tau^+ \tau^-$
T, L	< 0.06	3.2 TeV	$b \rightarrow s\gamma, l^+l^-$
T, R	< 0.09	2.8 TeV	$b \rightarrow s\gamma, l^+l^-$

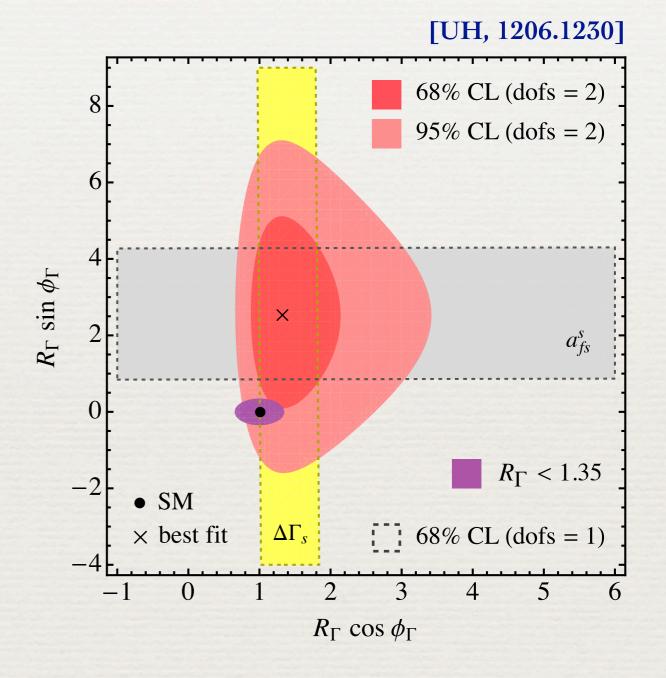
Assuming single operator dominance & complex C_i , one obtains quite loose bounds on scalar & vector operators, whereas tensor contributions are severely constrained, mostly due to $B \rightarrow X_s \gamma$

Present Data: $(\Gamma_{12})_{NP}$ Due to $b \rightarrow s\tau^+\tau^-$

Upper limit on C_i translate into:

$$(R_{\Gamma})_{S,AB} < 1.15$$
,
 $(R_{\Gamma})_{V,AB} < 1.35$,
 $(R_{\Gamma})_{T,L} < 1.004$,
 $(R_{\Gamma})_{T,R} < 1.008$

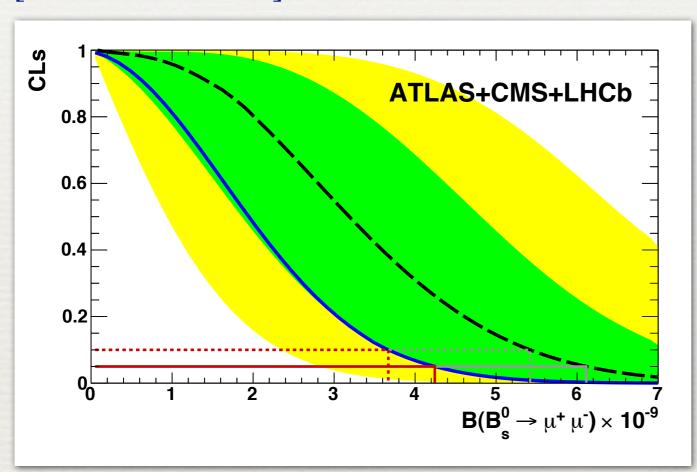
Largest correction due to vector operator can change $|\Gamma_{12}|_{SM}$ by 35%. Tension in B-meson sector can be relaxed, but effects are factor of around 10 too small to provide full explanation



Rare B-Meson Decays

ATLAS, CMS & LHCb Cornering NP

[CMS-PAS-BPH-12-009]



95% CL bounds:

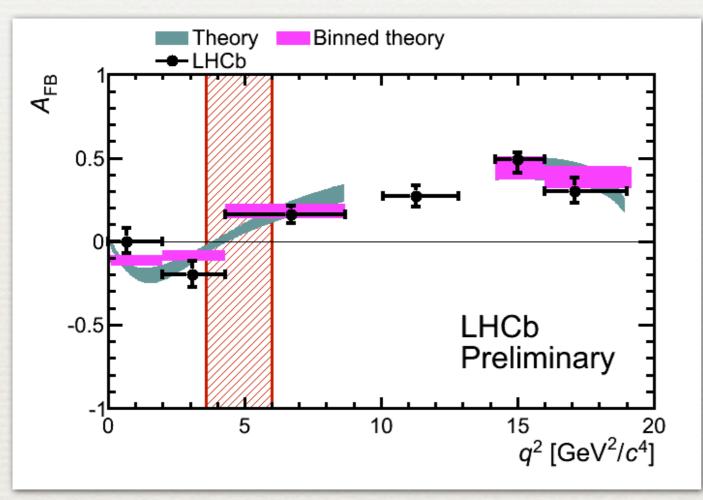
+900%

allowed relative to SM

+40%

LHCb Cornering NP

[LHCb-CONF-2011-038; LHCb-CONF-2012-008]

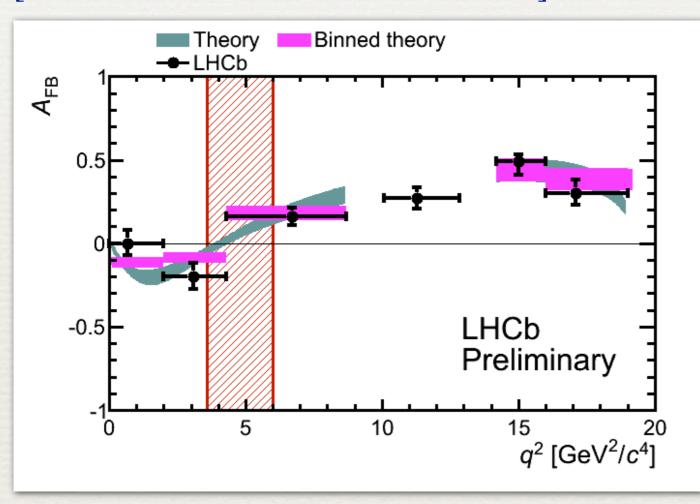


LHCb measurements of $B \rightarrow K^*\mu^+\mu^-$ distributions show nice agreement with SM expectations

but O(50%) NP effects relative to SM amplitudes not ruled out yet

LHCb Cornering NP

[LHCb-CONF-2011-038; LHCb-CONF-2012-008]



LHCb measurements of $B \rightarrow K^*\mu^+\mu^-$ distributions show nice agreement with SM expectations

but O(50%) NP effects relative to SM amplitudes not ruled out yet

Spectacular NP effects excluded (unlikely), but in view of cleanness of rare B decays visible effects still possible

MSSM: Anatomy of Higgs Mass

Tree-level mass of lightest CP-even Higgs maximized in decoupling limit $M_A >> M_Z$ with $\tan\beta = t_\beta >> 1$:

$$m_h^2 \approx M_Z^2 c_{2\beta}^2 \left(1 - \frac{M_Z^2}{M_A^2} s_{2\beta}^2\right) \le M_Z^2$$

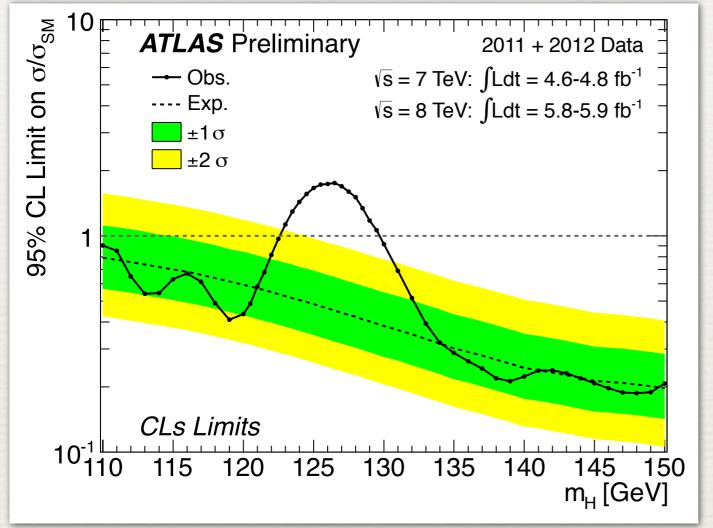
■ Large one-loop contributions arise from incomplete cancellation of top-quark & -squark loop

$$(\Delta m_h^2)_{\tilde{t}} \approx \frac{3\sqrt{2}G_F}{2\pi^2} \, m_t^4 \left[-\ln\left(\frac{m_t^2}{m_{\tilde{t}}^2}\right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right]$$

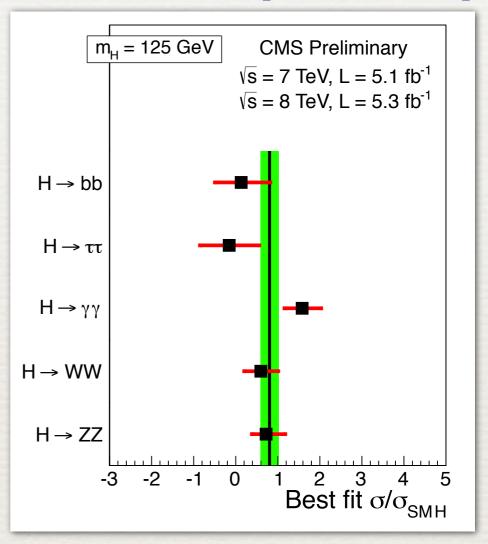
that can make m_h sufficiently heavy if $m_{\tilde{t}} = \sqrt{m_{\tilde{t}1} \, m_{\tilde{t}2}} >> m_t$ and/or $X_t = A_t - \mu/t_\beta$ close to maximal $|X_t| = \sqrt{6} \, m_{\tilde{t}}$. Two-loop effects break symmetry $X_t \leftrightarrow -X_t$ & allow larger value of m_h for $sgn(X_tM_3) = +1$

MSSM: Anatomy of Higgs Mass

[ATLAS-CONF-2012-093]



[CMS-HIG-12-020]



In MSSM, Higgs with mass of around 125 GeV clearly not natural. Will be agnostic about issue & assume fine-tuned region of MSSM parameter space realized with $M_A >> M_Z \& t_\beta \& trilinear term A_t$ large. Are there other observable consequences?

MSSM: Dissecting Higgs Production

Structure of MSSM corrections to gg \rightarrow h & h $\rightarrow \gamma\gamma$ can be easily understood by studying case of soft Higgs. In decoupling limit one finds for stop & sbottom contributions to hgg vertex:

$$\kappa_{\tilde{q}} \approx \frac{1}{4} m_q^2 \frac{\partial}{\partial m_q^2} \ln\left[\det\left(\mathcal{M}_{\tilde{q}}^2\right)\right] \qquad \qquad \tilde{q} \qquad h$$

$$g \stackrel{\tilde{q}}{=} \tilde{q} \qquad h$$

$$\approx \begin{cases} \frac{m_t^2}{4} \left(\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2}\right), & \tilde{q} = \tilde{t} \\ -\frac{m_b^2 X_b^2}{4 m_{\tilde{b}_1}^2 m_{\tilde{b}_2}^2}, & \tilde{q} = \tilde{b} \end{cases}$$

MSSM: Dissecting Higgs Production

Assuming degenerate stops & neglecting sbottom-loop effects, shift in Higgs production cross section hence approximately given by:

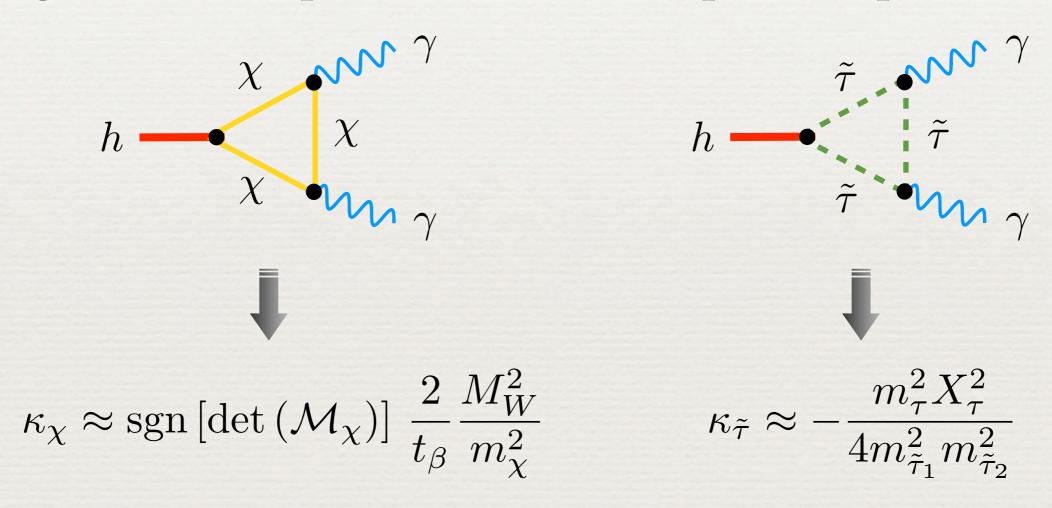
$$R_h \approx (1 + \kappa_{\tilde{t}})^2 \approx \begin{cases} 1 + \frac{m_t^2}{m_{\tilde{t}}^2}, & X_t = 0\\ 1 - 2\frac{m_t^2}{m_{\tilde{t}}^2}, & X_t = \sqrt{6} m_{\tilde{t}} \end{cases}$$

As Higgs-boson mass around 125 GeV calls for close to maximal mixing, natural to expect suppression of $gg \rightarrow h$. In fact, this is exactly what happens in wide ranges of MSSM parameter space

[see for example Dermisek & Low, hep-ph/0701235; Cacciapaglia et al., 0901.0927]

MSSM: Dissecting Higgs Decay to Diphotons

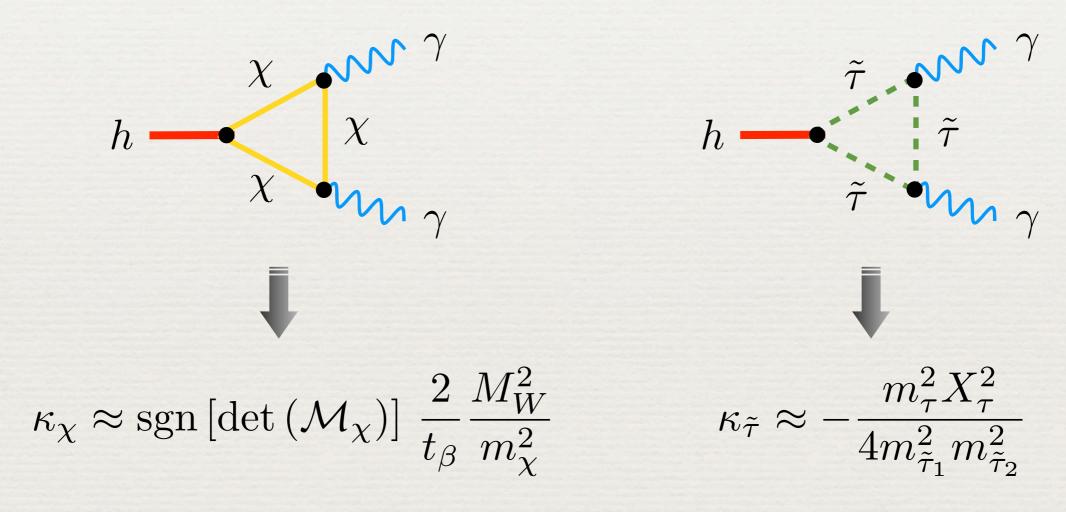
For $M_A >> M_Z$, charged Higgs effects are strongly suppressed, but chargino & stau loops can have notable impact on diphoton rate:



[see for example Djouadi et al., hep-ph/9612362; Carena et al., 1112.3336; 1205.5842]

MSSM: Dissecting Higgs Decay to Diphotons

For $M_A >> M_Z$, charged Higgs effects are strongly suppressed, but chargino & stau loops can have notable impact on diphoton rate:

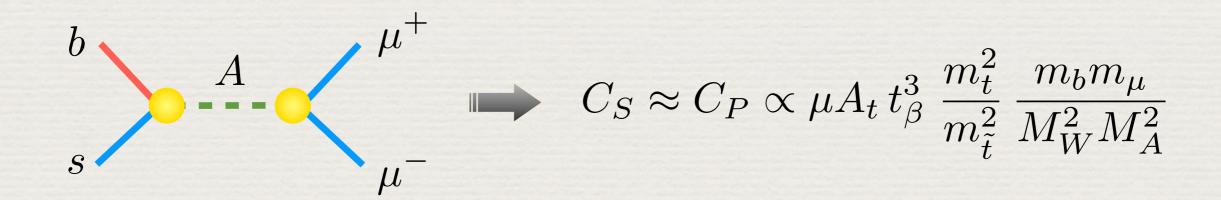


Unlike chargino effects, stau loops not t_{β} suppressed. In fact, $R_{\gamma} > 1$ needs light stau with large mixing $X_{\tau} = A_{\tau}$ - μt_{β} , which is most easily achieved for $t_{\beta} >> 1$ & μ significantly above weak scale

MSSM: Anatomy of $B_s \rightarrow \mu^+\mu^-$

In large-t_β regime, rare purely leptonic B_s decay receives dominant corrections from neutral Higgs double penguins:

$$R_{\mu^{+}\mu^{-}} = \frac{\text{Br}(B_s \to \mu^{+}\mu^{-})}{\text{Br}(B_s \to \mu^{+}\mu^{-})_{\text{SM}}} \approx 1 - 13.2 \ C_P + 43.8 \left(C_S^2 + C_P^2\right)$$



Term linear in pseudoscalar coefficient C_P due to interference with semileptonic axial-vector SM contribution. Data prefers $C_P > 0$

MSSM: Anatomy of $B_s \rightarrow \mu^+\mu^-$

In fact, upper bound on branching ratio of $B_s \to \mu^+\mu^-$ translates into two-sided limit on product μA_t . For example, $R_{\mu^+\mu^-} < 1.3$ gives

$$-\frac{0.6}{\text{TeV}^2} \lesssim \frac{\mu A_t}{m_{\tilde{t}}^2 M_A^2} \left(\frac{t_\beta}{50}\right)^3 \lesssim \frac{5.2}{\text{TeV}^2}$$

Inequality shows that for $sgn(\mu A_t) = +1$ constraint from $B_s \rightarrow \mu^+\mu^-$ more easily evaded. For $\mu A_t > 0$ rate below SM. Taking

$$\frac{\mu A_t}{m_{\tilde{t}}^2 M_A^2} \left(\frac{t_\beta}{50}\right)^3 \approx \frac{2.3}{\text{TeV}^2}$$

for example implies suppression by about 50%

Slice of MSSM Parameter Space

Above suggests that parameter space with $\mu > 0 \& A_t > 0$ is least constrained & may lead to interesting effects. Fix relevant MSSM parameters to following weak-scale values

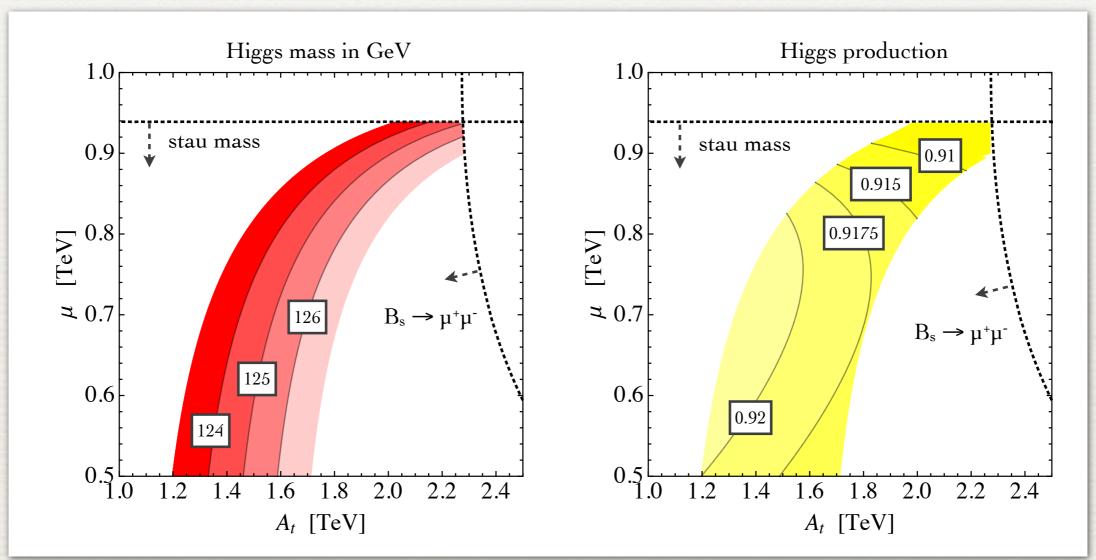
$$t_{eta} = 60 \,, \quad M_A = 1 \, {
m TeV}$$
 $ilde{m}_{Q_3} = 1.5 \, {
m TeV} \,, \quad ilde{m}_{u_3} = 1.5 \, {
m TeV}$ $ilde{m}_{L_3} = 325 \, {
m GeV} \,, \quad ilde{m}_{l_3} = 325 \, {
m GeV} \,, \quad A_{ au} = 500 \, {
m GeV}$ $M_1 = 100 \, {
m GeV} \,, \quad M_2 = 300 \, {
m GeV} \,, \quad M_3 = 1.2 \, {
m TeV}$

& vary trilinear term At & Higgsino mass parameter µ

[see also Carena et al., 1112.3336; 1205.5842]

At-µ Planes: mh & Rh

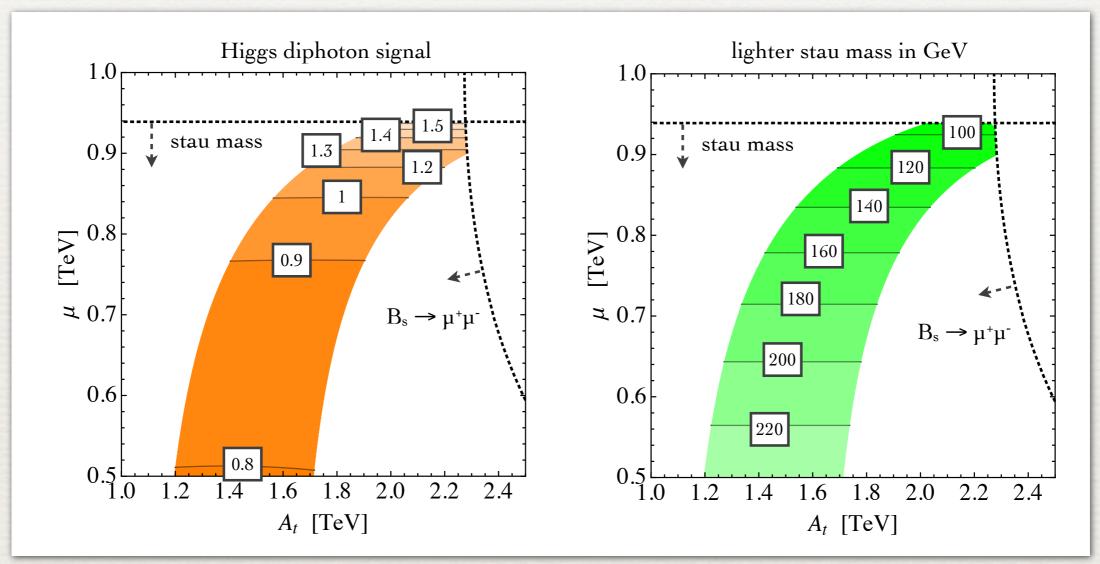
[UH & Mahmoudi, 1208.xxxx]



Higgs mass determination & lower limit on stau mass of 92 GeV (LHCb bound on $B_s \rightarrow \mu^+\mu^-$) bound μ (A_t) from above. In preferred parameter space, Higgs production smaller than SM by about 10%

At-μ Planes: Rγγ & m_{τ̃1}

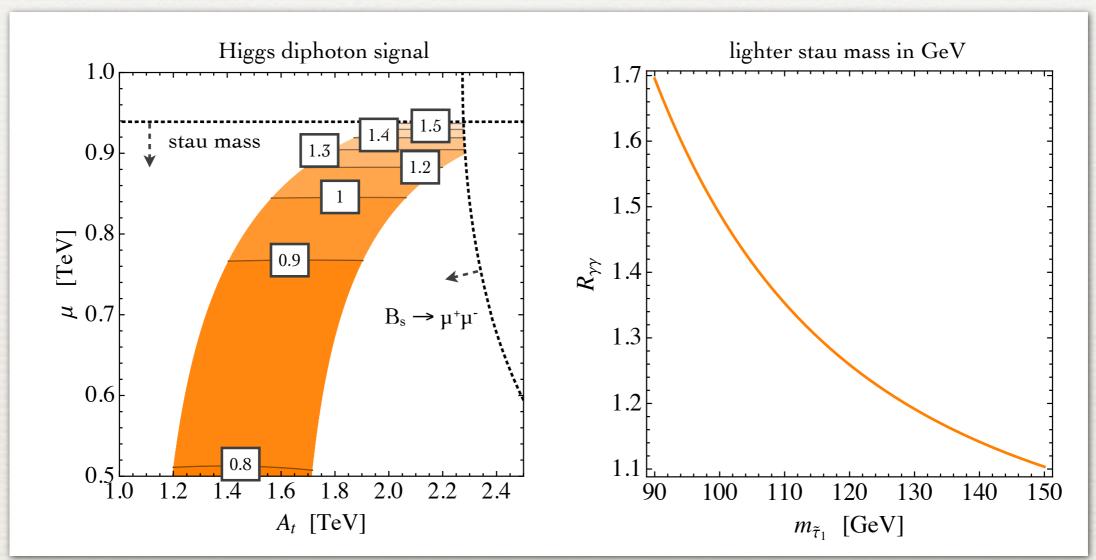
[UH & Mahmoudi, 1208.xxxx]



Enhancement in diphoton rate strongly correlated with mass of lighter stau mass eigenstate & μ parameter. Can find upper bound on $R_{\gamma\gamma}$ as function of $m_{\tilde{\tau}_1}$ & absolute limit of $R_{\gamma\gamma} \lesssim 1.7$

At-μ Planes: Rγγ & m_{τ̃1}

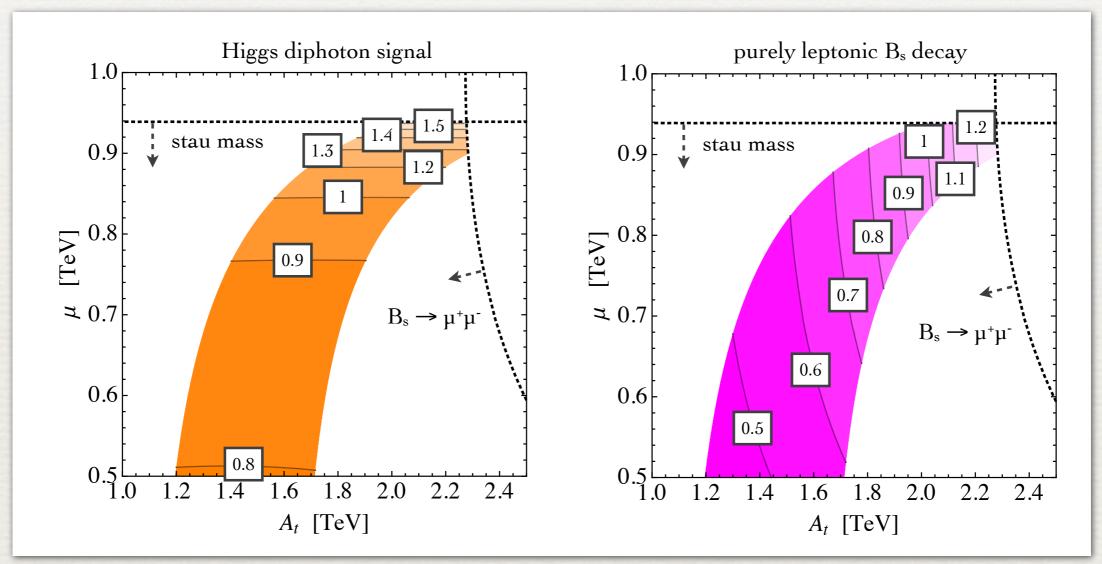
[UH & Mahmoudi, 1208.xxxx]



Enhancement in diphoton rate strongly correlated with mass of lighter stau mass eigenstate & μ parameter. Can find upper bound on $R_{\gamma\gamma}$ as function of $m_{\tilde{\tau}_1}$ & absolute limit of $R_{\gamma\gamma} \lesssim 1.7$

A_t-μ Planes: R_{γγ} & R_{μ+μ}-

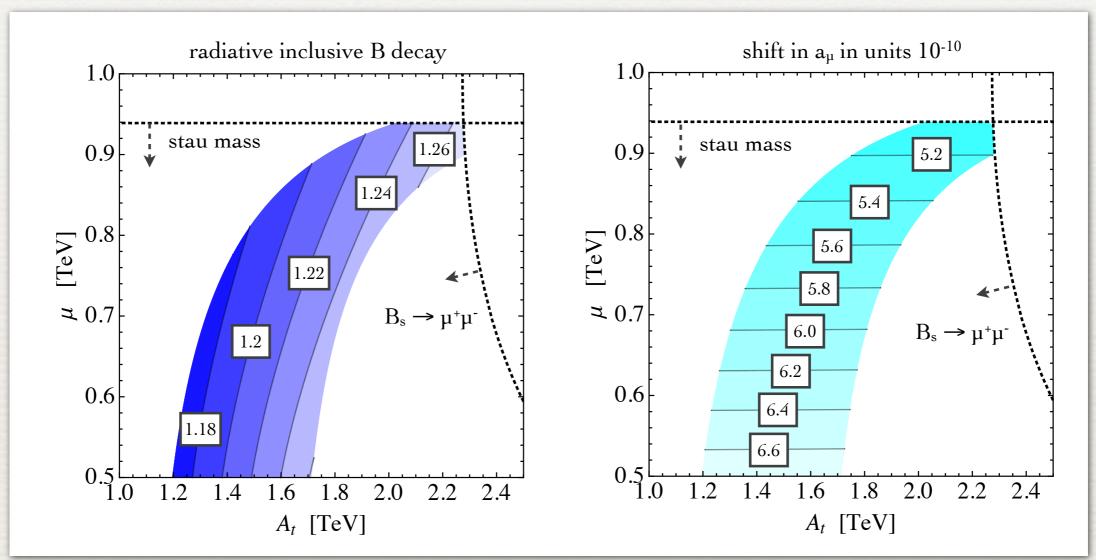
[UH & Mahmoudi, 1208.xxxx]



Increases in & depletions of $R_{\gamma\gamma}$ & $B_s \rightarrow \mu^+\mu^-$ branching ration occur simultaneously. Stringent link can be broken by further decoupling heavy Higgses, $M_A >> 1$ TeV

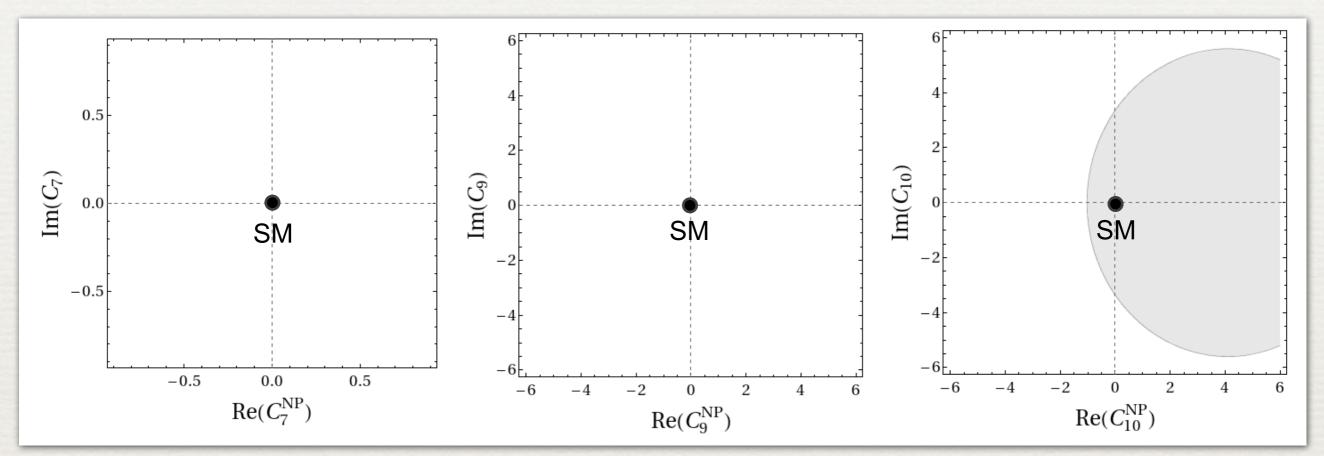
A_t-μ Planes: R_{Xs} & Δa_μ

[UH & Mahmoudi, 1208.xxxx]



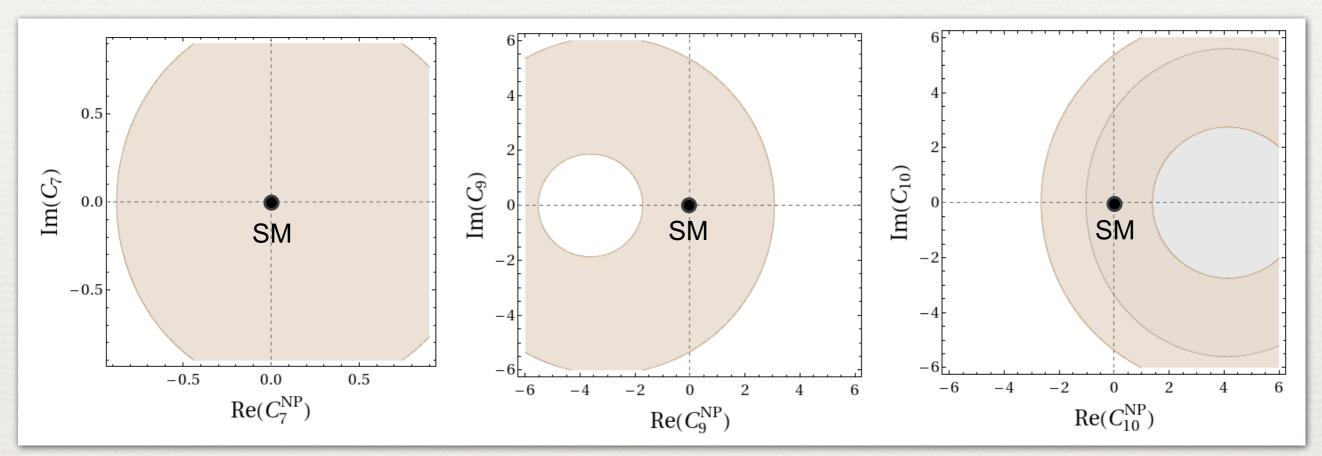
Branching ratio of $B \to X_s \gamma$ enhanced by (20-30)%, which can be probed with improved theoretical & experimental accuracy. Tension in anomalous magnetic moment of muon reduced

[Altmannshofer & Straub, 1206.0273]



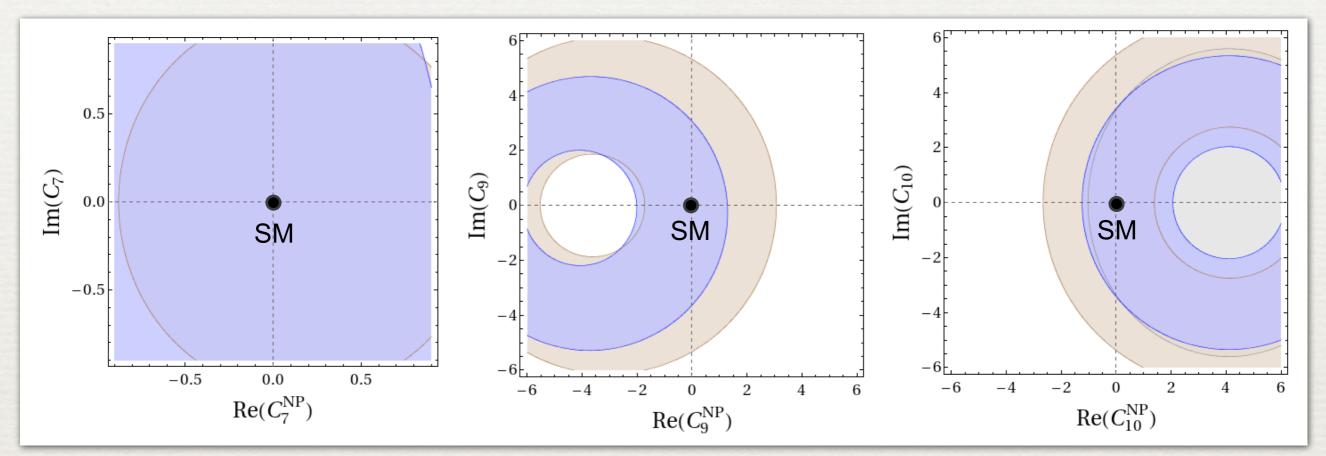
•
$$B_s \rightarrow \mu^+ \mu^-$$

[Altmannshofer & Straub, 1206.0273]



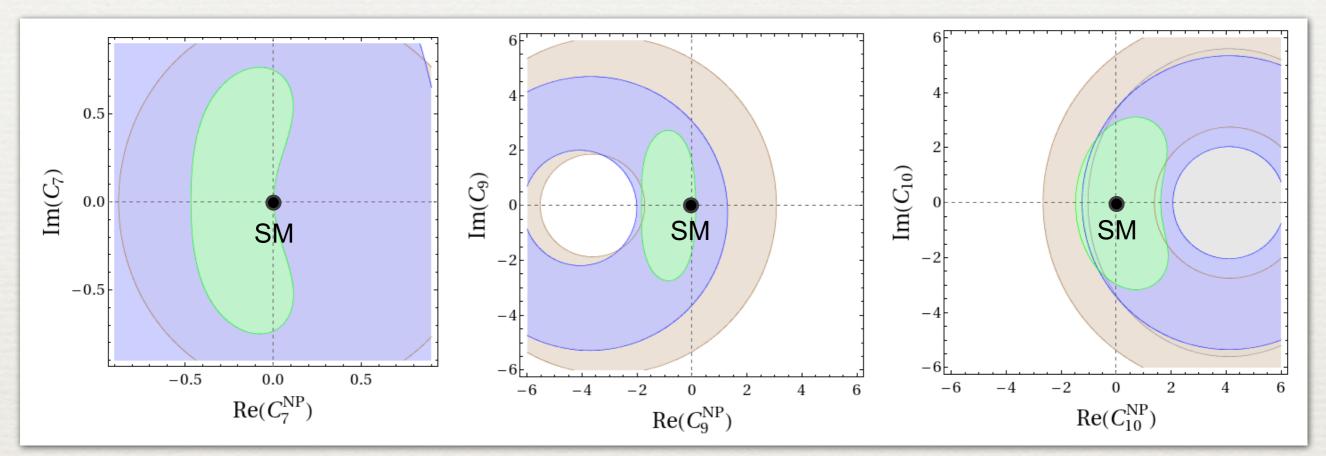
•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$

[Altmannshofer & Straub, 1206.0273]



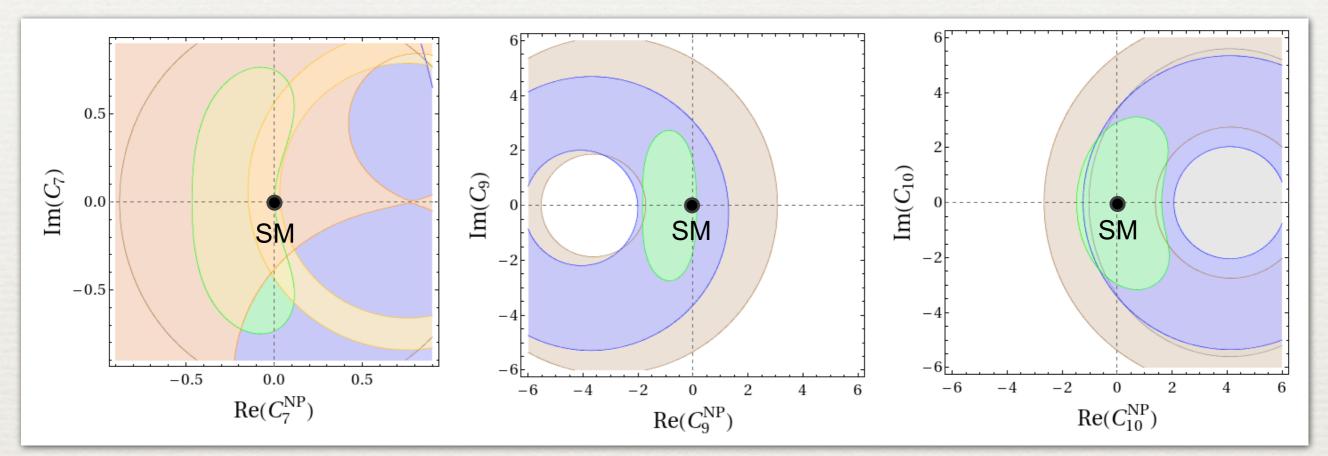
•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$ • $B \rightarrow K\mu^+\mu^-$

[Altmannshofer & Straub, 1206.0273]

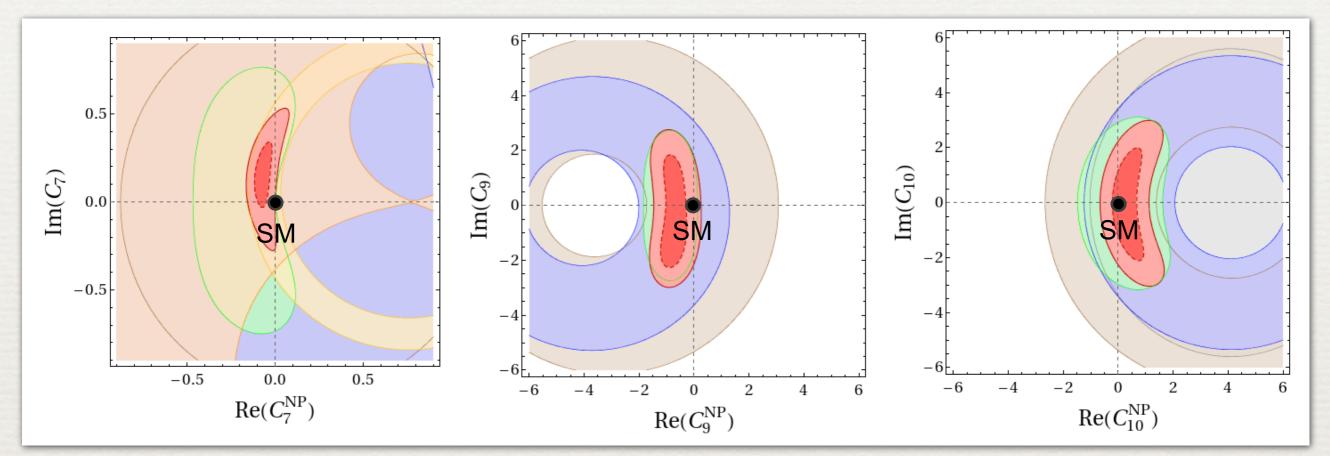


•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$ • $B \rightarrow K\mu^+\mu^-$ • $B \rightarrow K^*\mu^+\mu^-$

[Altmannshofer & Straub, 1206.0273]



•
$$B_s \rightarrow \mu^+ \mu^-$$
 • $B \rightarrow X_s \mu^+ \mu^-$ • $B \rightarrow K \mu^+ \mu^-$ • $B \rightarrow K^* \mu^+ \mu^-$ • $B \rightarrow X_s \gamma$



- $B_s \rightarrow \mu^+ \mu^ B \rightarrow X_s \mu^+ \mu^ B \rightarrow K \mu^+ \mu^ B \rightarrow K^* \mu^+ \mu^ B \rightarrow X_s \gamma$
- Data shows reasonable agreement with SM: $\chi^2/dofs = 21.8/24$
- Need to measure CP-violating observables to better determine imaginary parts of Wilson coefficients

Implications for NP Scale

[Altmannshofer & Straub, 1206.0273]

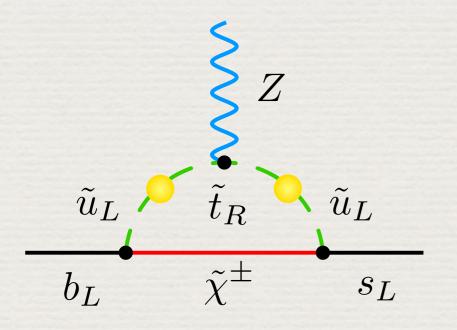
Operator		$\Lambda_{\rm NP} \ [{ m TeV}] \ { m for} \ C_i = 1$			
		+	_	+i	-i
$\overline{Q_7} =$	$\frac{m_b}{e}(\bar{s}\sigma_{\mu\nu}P_Rb)F^{\mu\nu}$	69	270	43	38
$Q_7' =$	$\frac{m_b}{e}(\bar{s}\sigma_{\mu\nu}P_Lb)F^{\mu\nu}$	46	70	78	47
$Q_9 =$	$(\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\ell)$	29	64	21	22
$Q_9' =$	$(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$	51	22	21	23
$Q_{10} =$	$(\bar{s}\gamma_{\mu}P_Lb)(\bar{\ell}\gamma^{\mu}\gamma_5\ell)$	43	33	23	23
$Q'_{10} =$	$(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$	25	89	24	23
$Q_S^{(\prime)} =$	$\frac{m_b}{m_{B_s}}(\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$	93	93	98	98
$Q_P =$		173	58	93	93
$Q_P' =$	$rac{m_b}{m_{B_s}}(ar{s}P_Lb)(ar{\ell}\gamma_5\ell)$	58	173	93	93

Bounds not as strong as those from $K-\overline{K} \& B-\overline{B}$ mixing, but for generic NP with strong coupling, scales above 20 TeV are probed

Two-Sided Limits on $B_s \rightarrow \mu^+\mu^-$

[Altmannshofer & Straub, 1206.0273]

$C_{7,9,10}$	\mathbb{R}	\mathbb{C}			\mathbb{R}	\mathbb{C}
$C'_{7,9,10}$			${\mathbb R}$	\mathbb{C}	${\mathbb R}$	\mathbb{C}
$Br(B_s \to \mu^+ \mu^-) [10^{-9}]$	[1.9, 5.2]	[1.1, 4.6]	[1.1, 4.2]	[0.9, 4.6]	< 4.6	< 4.2



LHC bound on $B_s \rightarrow \mu^+\mu^-$ can be saturated without (pseudo)scalar operators. Experiments only now start to probe NP in Z-penguins that enters through semileptonic operators

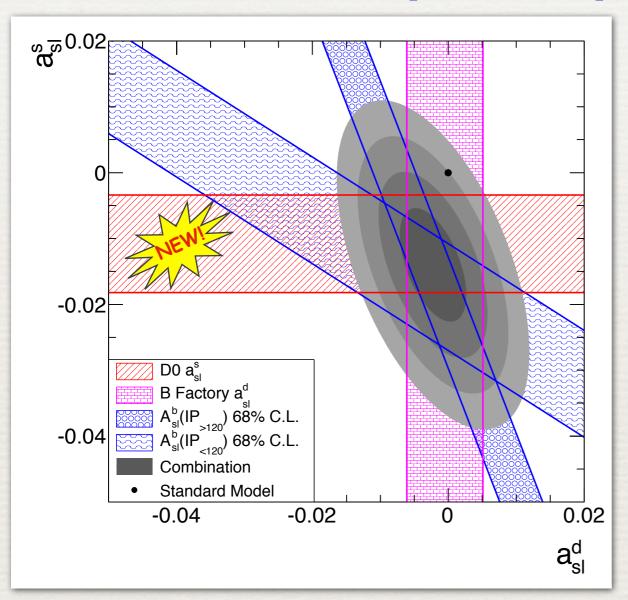
Conclusions

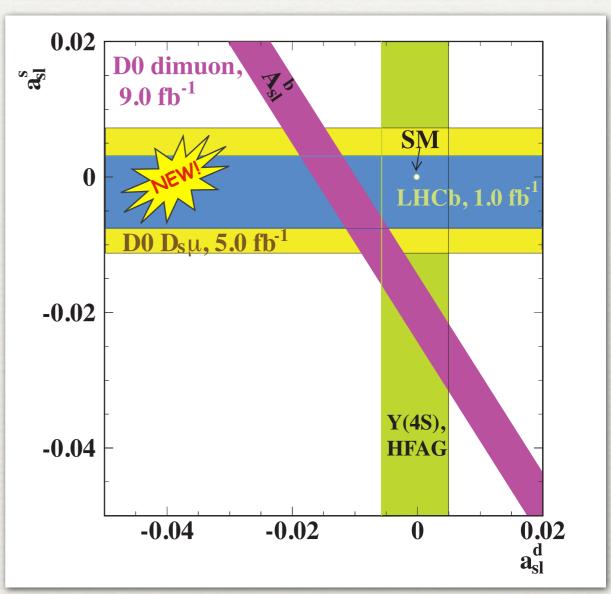
- B-mixing data shows good overall agreement with SM. Large A_{SL}^b requires NP in Γ_{12}^s and/or Γ_{12}^d , which is very difficult to construct. Further refined measurements of CP asymmetries needed to establish origin (statistical fluctuation or NP) of $\Delta B = 2$ anomaly
- First (1–5) fb⁻¹ of LHC data took hope for spectacular effects in rare B decays. But at moment data not precise enough to exclude NP contaminations of O(50%). This still leaves room for visible & interesting effects, in particular, if CP violating
- Only synergy between high- & low-p_T observations may give us key to solving puzzles of fundamental physics. LHCb precision measurements of B-mixing observables, $B_s \rightarrow \mu^+\mu^-$, $B \rightarrow K^*l^+l^-$, angle γ , ... crucial in endeavour

New Data on CP asymmetry in B_s Mixing

[DØ, 1207.1769]

[LHCb-CONF-2012-022]





Recent determinations of afs by DØ & LHCb agree with each other
 & SM within errors. Further improvements needed to clarify origin of Asl anomaly

Best-Fit Solutions to Data

	before 2011	in 2012
R _M	1.05 ± 0.16	1.04 ± 0.16
фм [°]	-46 ± 19	-0.4 ± 5.0
R_{Γ}	3.3 ± 1.5	3.4 ± 1.8
фг [°]	7 ± 30	56 ± 22

Even before measurements of B_s -mixing observables by LHCb, a perfect 4-parameter fit (χ^2 =0) to data required large corrections in Γ_{12} . New data set favors both enhanced magnitude R_Γ & phase φ_Γ

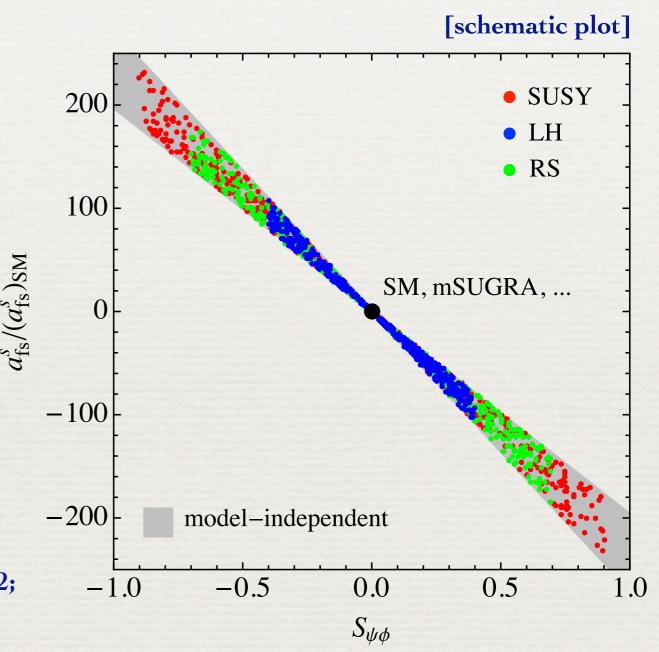
If NP in M₁₂, Which Kind?

In all NP models without direct
 CPV in decay (like SUSY, little
 Higgs (LH), Randall-Sundrum
 (RS) scenarios, ...), observables
 afs & Sψφ strongly correlated:

$$\frac{a_{fs}^s}{(a_{fs}^s)_{\rm SM}} \approx -240 \, \frac{S_{\psi\phi}}{R_M} \,,$$

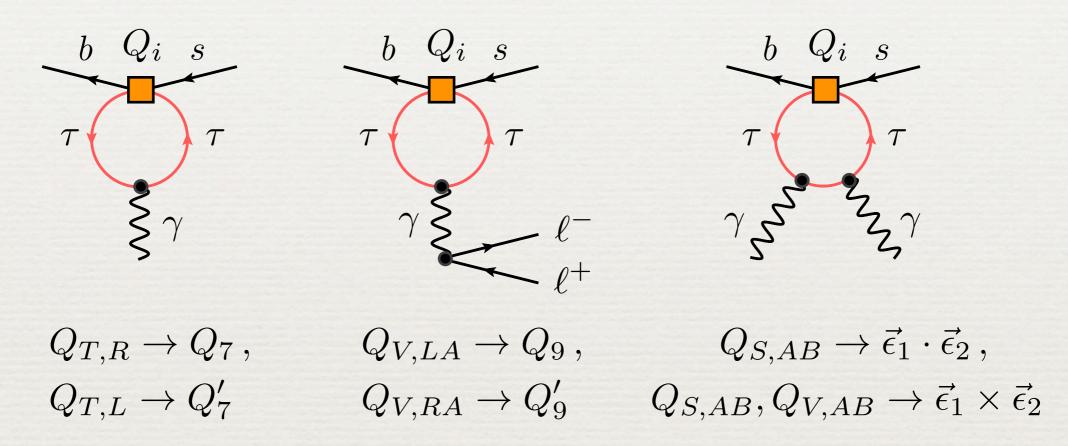
$$R_M = 1.05 \pm 0.16$$

[see e.g. Ligeti, Papucci & Perez, hep-ph/0604112; Blanke et al., 0805.4393, 0809.1073; Altmannshofer et al., 0909.1333; Casagrande et al., 0912.1625; ...]



Bounds on (s̄b)(τ̄τ) Operators

■ Indirect constraints due to operator mixing & matrix elements:[†]



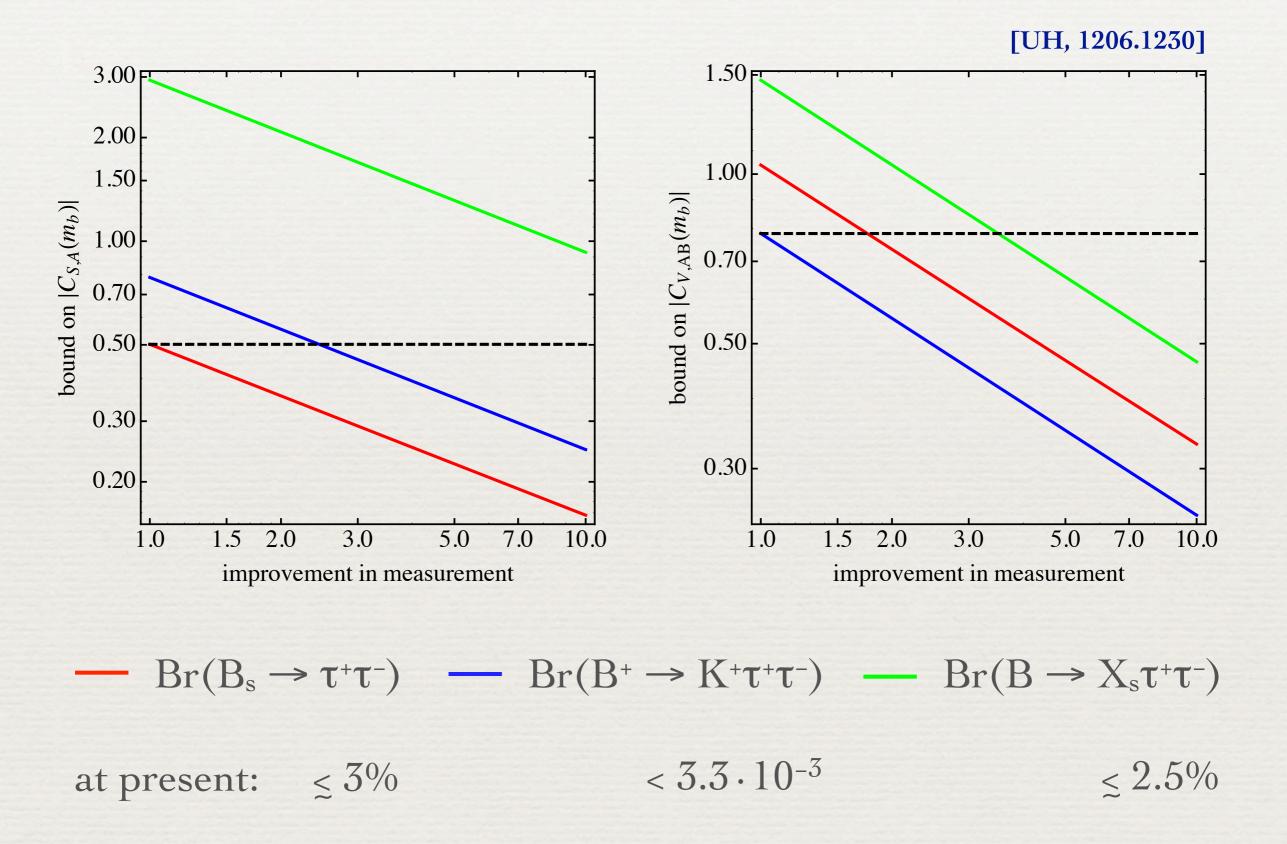
Bounds on C_i 's derived by taking into account measurements of $B \to X_s \gamma$ (Br), $B \to K^* \gamma$ (Br, S, A_I), $B \to X_s l^+ l^-$ (Br), $B \to K^* l^+ l^-$ (Br, A_{FB}, F_L) & upper limit on B_s $\to \gamma \gamma$ (Br)

 $^{\dagger}Q_{S,AB}$ does not mix into $b \rightarrow s\gamma$, l^+l^- but has non-zero $b \rightarrow s\gamma\gamma$ elements

Details on Bounds on Wilson Coefficients

$C_i(m_b)$	$B^+ \rightarrow K^+ \tau^+ \tau^-$	$B_s \rightarrow \tau^+ \tau^-$	$B \rightarrow X_s \tau^+ \tau^-$	$b \rightarrow s\gamma, l^+l^-$	$B_s \rightarrow \gamma \gamma$
S, AB	< 0.8	≤ 0.5	≤ 2.9		< 3.4, 2.3
V, AB	< 0.8	≤ 1.0	≤ 1.5	< 1.1, 1.0	< 5.9
T, A	< 0.4		< 0.4	< 0.06, 0.09	
7				< 0.23	< 2.2
7'				< 0.20	< 1.9
9				< 2.0	
9'				< 1.7	

Future (?) Bounds on Wilson Coefficients



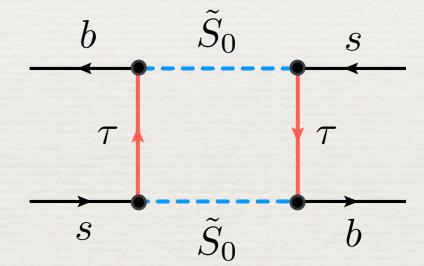
Lepto-Quark Contributions to Γ_{12}

■ For SU(2) singlet scalar lepto-quarks (LQs) relevant coupling

$$\mathcal{L}_{LQ} \ni (\lambda_{R\tilde{S}_0})_{ij} (\bar{d}_j^c P_R e_i) \tilde{S}_0 + \text{h.c.}$$

leads to $\Delta B = 1 \& \Delta B = 2$ interactions

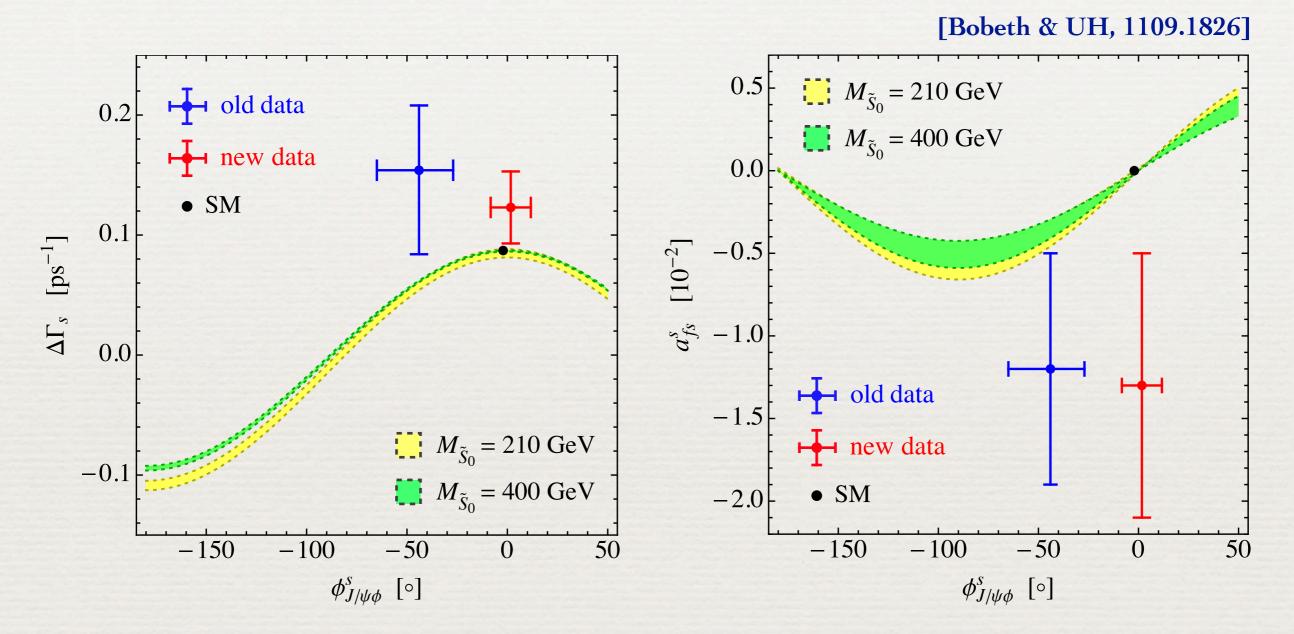
$$\mathcal{L}_{\text{eff}} \ni -\frac{(\lambda_{R\tilde{S}_{0}})_{32}(\lambda_{R\tilde{S}_{0}})_{33}}{2M_{\tilde{S}_{0}}^{2}} Q_{V,RR}$$



which give a real ratio (btw. $r_{SM} \approx -200$)

$$r_{\rm LQ} = \frac{(M_{12})_{\rm LQ}}{(\Gamma_{12})_{\rm LQ}} = 2084 \left(\frac{M_{\tilde{S}_0}^2}{250 \,\rm GeV}\right)$$

Predictions for SU(2) Singlet Scalar LQs



Even a light LQ fails to describe data & parameter space shrinks further for heavier LQs. Visible cosine-, sine-like correlations & $\Delta\Gamma < (\Delta\Gamma)_{SM}$ model-independent feature

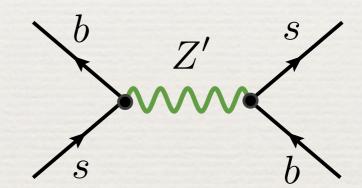
Z' Contributions to Γ_{12}

For left-handed Z' boson relevant couplings

$$\mathcal{L}_{Z'} \ni \frac{g}{\cos \theta_W} \left[\left(\kappa_{sb}^L \, \bar{s} \gamma^{\mu} P_L b + \text{h.c.} \right) + \kappa_{\tau\tau}^L \, \bar{\tau} \gamma^{\mu} P_L \tau \right] Z'_{\mu}$$

give rise to $\Delta B = 1 \& \Delta B = 2$ interactions

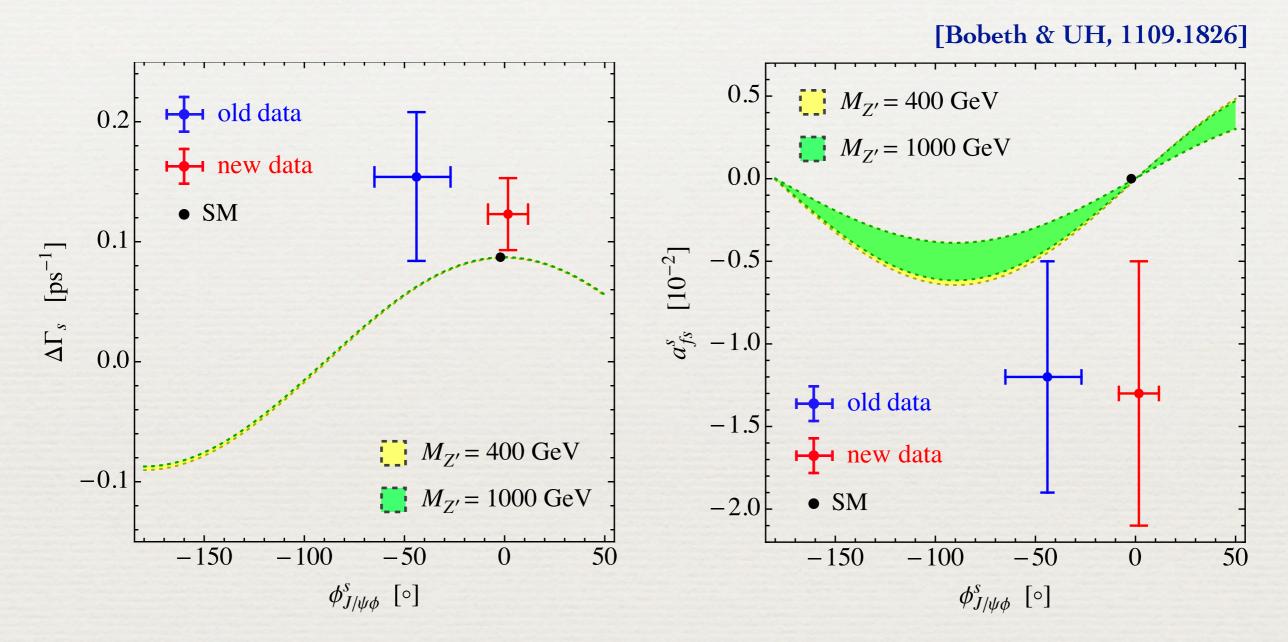
$$\mathcal{L}_{\text{eff}} \ni -\frac{8G_F}{\sqrt{2}} \frac{M_Z^2}{M_{Z'}^2} \kappa_{sb}^L \kappa_{\tau\tau}^L Q_{V,LL}$$



which again produce a real ratio

$$r_{Z'} = \frac{(M_{12})_{Z'}}{(\Gamma_{12})_{Z'}} = 6.0 \cdot 10^5 \left(\frac{M_{Z'}}{250 \,\text{GeV}} \frac{1}{\kappa_{\tau\tau}^L}\right)^2$$

Predictions for Left-handed Z'

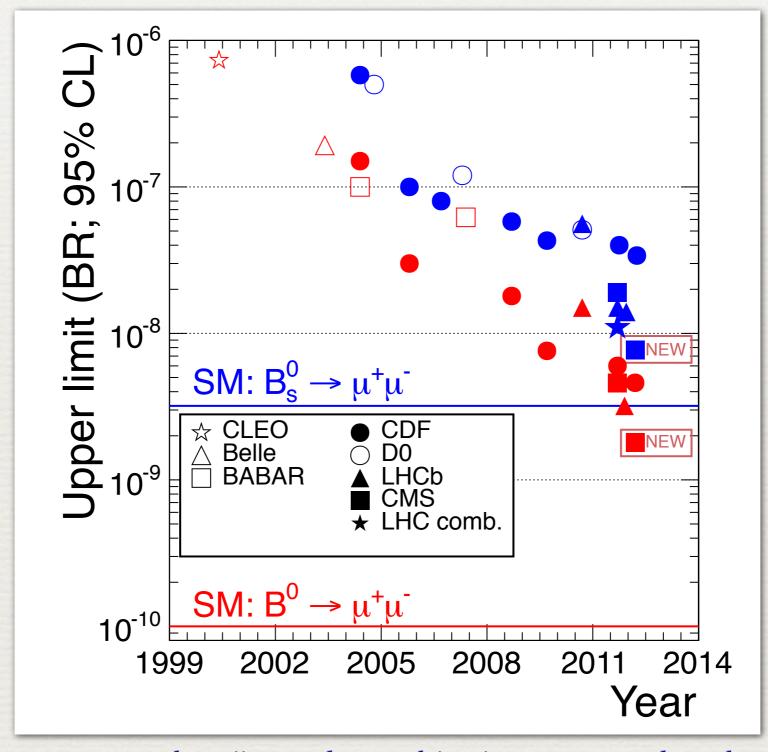


Left-handed Z' provides an even worse description of data than LQs. Model-independent correlations & $\Delta\Gamma < (\Delta\Gamma)_{SM}$ also present in case of new neutral vector boson

Further Comments on NP in $\Gamma_{12}^{s,d}$

- Bounds on $(\bar{s}b)(\bar{\tau}\mu)$ are stronger by roughly a factor of 7 than those on $(\bar{s}b)(\bar{\tau}\tau)$ operators, since $Br(B^+ \to K\tau^{\pm}\mu^{\mp}) < 7.7 \cdot 10^{-5}$ compared to $Br(B^+ \to K^+\tau^+\tau^-) < 3.3 \cdot 10^{-3}$. Hence, contributions from $(\bar{s}b)(\bar{\tau}\mu)$ operators cannot improve fit to B_s data notable
- An contribution from $(\bar{d}b)(\bar{\tau}\tau)$ operators to Γ_{12}^d large enough to explain data excluded by bound $Br(B \to \tau^+\tau^-) < 4.1 \cdot 10^{-3}$. Case of $\tau^{\pm}\mu^{\mp}$ final state even less favorable
- My naive guess is that (db)(cc) operators are heavily constrained (should be numerically smaller than QCD/electroweak penguins in SM) by exclusive B decays & thus also cannot resolve tension in B-mixing sector. A dedicated analysis is however missing

Timeline of $B_{s,d} \rightarrow \mu^+\mu^-$

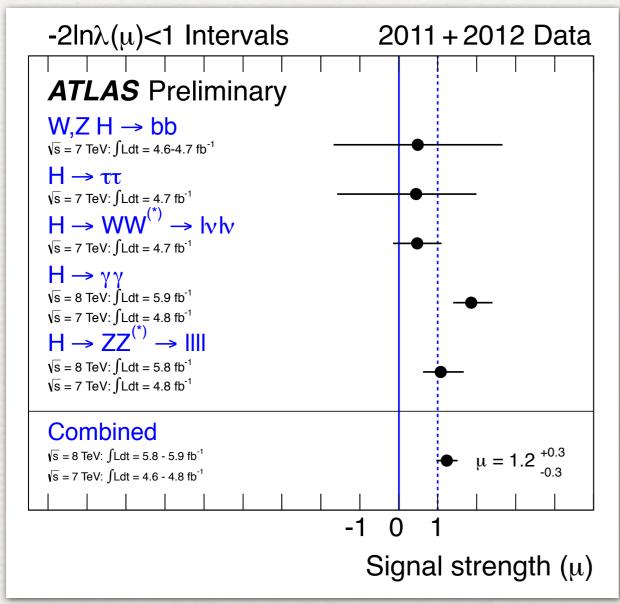


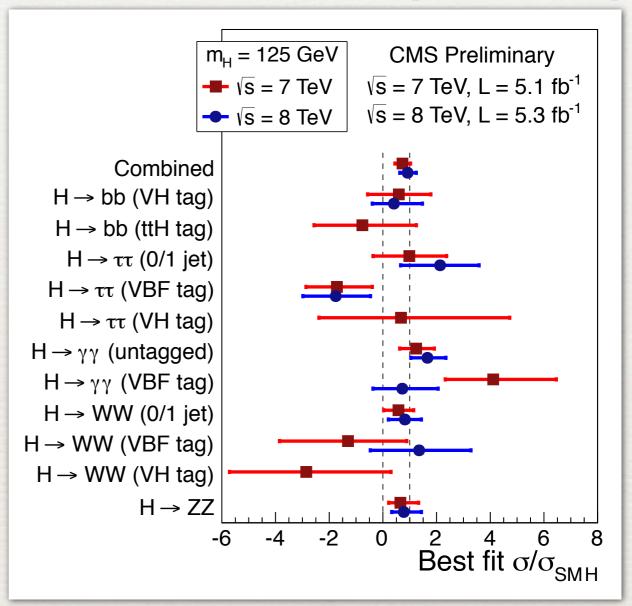
http://cms.web.cern.ch/org/cms-papers-and-results

Higgs: 2011 vs. 2012 Data

[ATLAS-CONF-2012-093]

[CMS-HIG-12-020]





Both ATLAS & LHC see excess in $h \rightarrow \gamma \gamma$, but size of effect smaller in 2012 than 2011 data. Altogether 2012 data looks more SM like

MSSM: Anatomy of Higgs Mass

For large t_{β} there are further contributions from sbottom & stau sector that can be relevant $(\tilde{f} = \tilde{b}, \tilde{\tau})$:

$$(\Delta m_h^2)_{\tilde{f}} \approx -\frac{N_c^{\tilde{f}}}{\sqrt{2}G_F} \frac{y_f^4}{48\pi^2} \frac{\mu^4}{m_{\tilde{f}}^4}$$

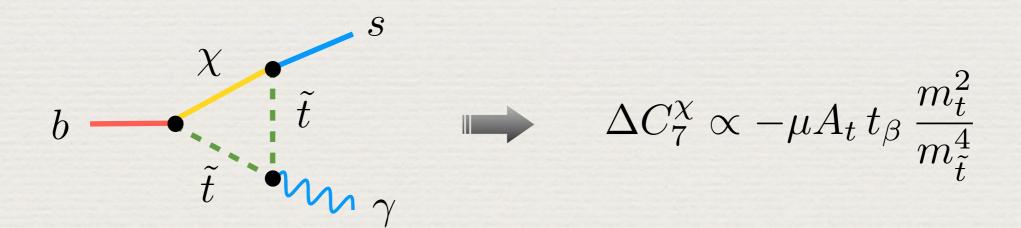
where $N_c^{\tilde{b},\tilde{\tau}}$ = 3,1. Corrections are negative & quartic in Higgsino mass μ . Their impact is minimized for $sgn(\mu M_{3,2})$ = +1

[see for example Carena et al., hep-ph/9504316, hep-ph/9508343; Haber et al., hep-ph/9609331]

MSSM: Anatomy of B \rightarrow X_s γ

■ In parameter region of interest, dominant MSSM contributions to inclusive radiative B decay stems from loops with stop & higgsinolike chargino:

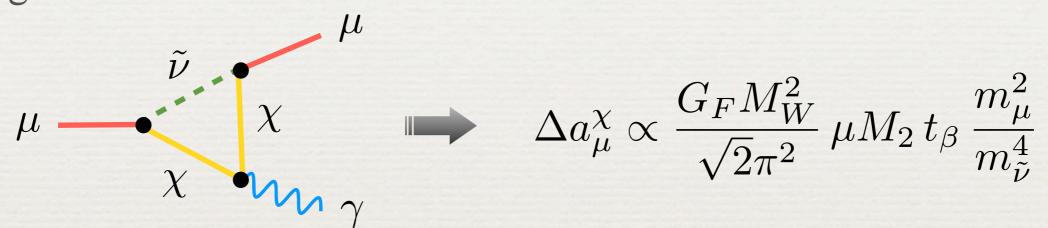
$$R_{X_s} = \frac{\text{Br}(B \to X_s \gamma)}{\text{Br}(B \to X_s \gamma)_{\text{SM}}} \approx 1 - 2.55 \Delta C_7 + 1.57 (\Delta C_7)^2$$



For $t_{\beta} = 50$, $m_{\tilde{t}} = |\mu| = 1$ TeV & $|A_t| = 2$ TeV, MSSM rate enhanced (suppressed) by around 20% relative to SM for $sgn(\mu A_t) = +1$ (-1)

MSSM: Anatomy of a_µ

■ Throughout parameter space of interest, dominant contribution to muon anomalous magnetic moment arises from chargino-sneutrino diagrams:



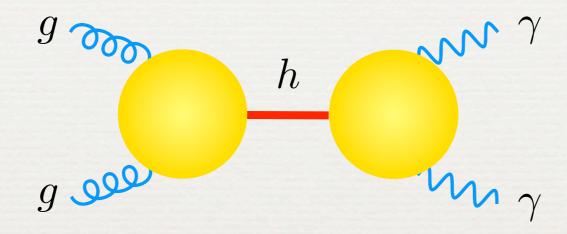
For $t_{\beta} = 50$, $m_{\tilde{\nu}} = |\mu| = 1$ TeV & $|M_2| = 0.2$ TeV, one has numerically

$$\Delta a_{\mu}^{\chi} \approx \operatorname{sgn}(\mu M_2) \, 7.5 \cdot 10^{-10}$$

meaning that for $\mu M_2 > 0$ tension between experimental result & SM prediction is reduced

[see for example Moroi, hep-ph/9512396]

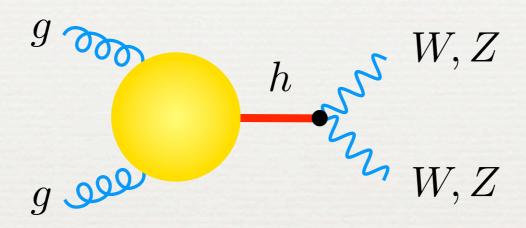
Master Formula for pp $\rightarrow \gamma \gamma$



$$\begin{split} R_{\gamma\gamma} &\approx 1 + 0.33 \left(\frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2 X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right) - 0.43 \frac{m_b^2 X_b^2}{m_{\tilde{b}_1}^2 m_{\tilde{b}_2}^2} \\ &+ 0.10 \frac{m_\tau^2 X_\tau^2}{m_{\tilde{\tau}_1}^2 m_{\tilde{\tau}_2}^2} + 1.63 \operatorname{sgn} \left(\mu M_2 \right) \frac{1}{t_\beta} \frac{M_W^2}{m_{\chi_1} m_{\chi_2}} - 2.46 \frac{M_Z^2}{M_A^2} \end{split}$$

Large non-decoupling corrections arise from fact that for Higgs of around 125 GeV branching fraction of Higgs to bb is about 60%

Master Formula for pp → WW,ZZ

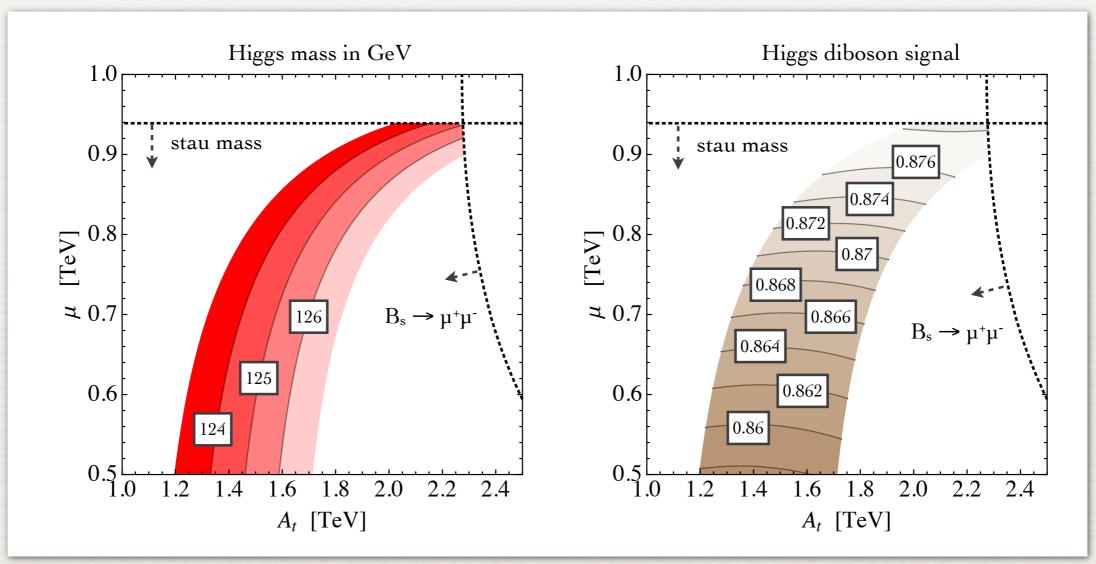


$$R_{VV} \approx 1 + 0.46 \left(\frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2 X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} - \frac{m_b^2 X_b^2}{m_{\tilde{b}_1}^2 m_{\tilde{b}_2}^2} \right)$$
$$-2.46 \frac{M_Z^2}{M_A^2}$$

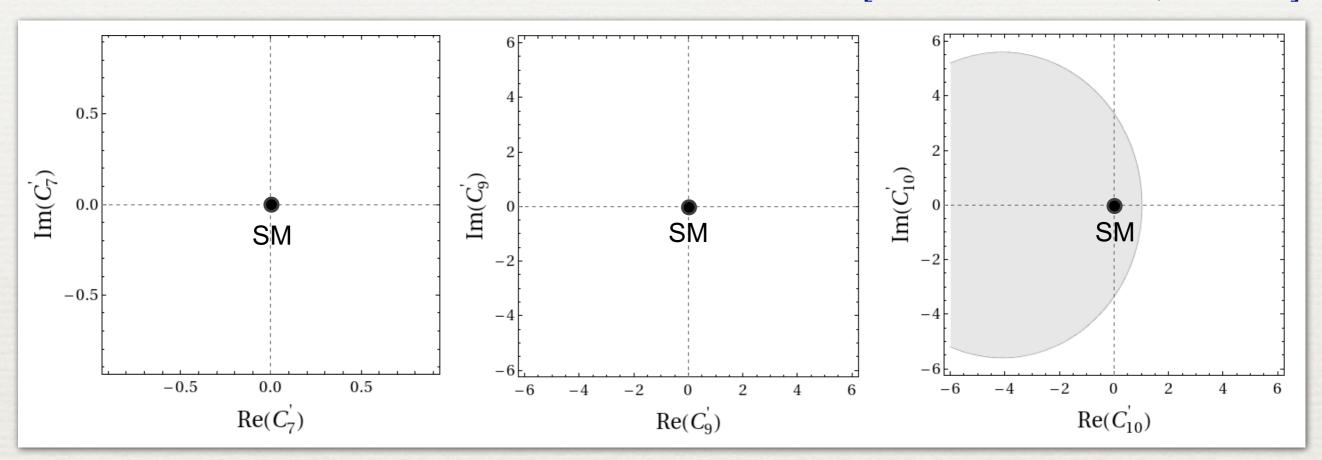
Also massive vector-boson channels plagued by non-decoupling corrections associated to Br(h \rightarrow bb) $\approx 60\%$

At-µ Planes: mh & Rww,zz

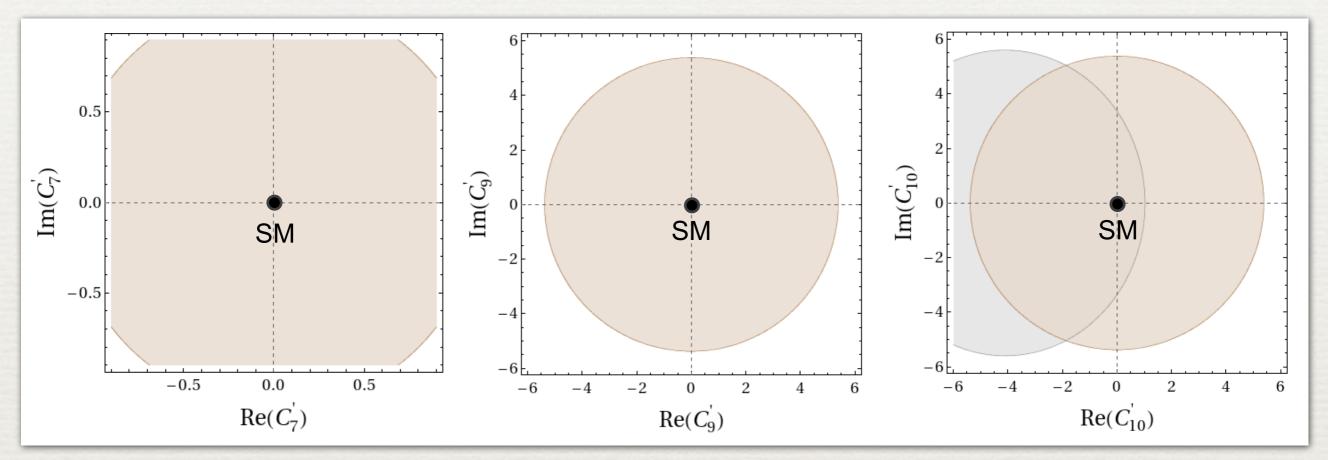
[UH & Mahmoudi, 1208.xxxx]



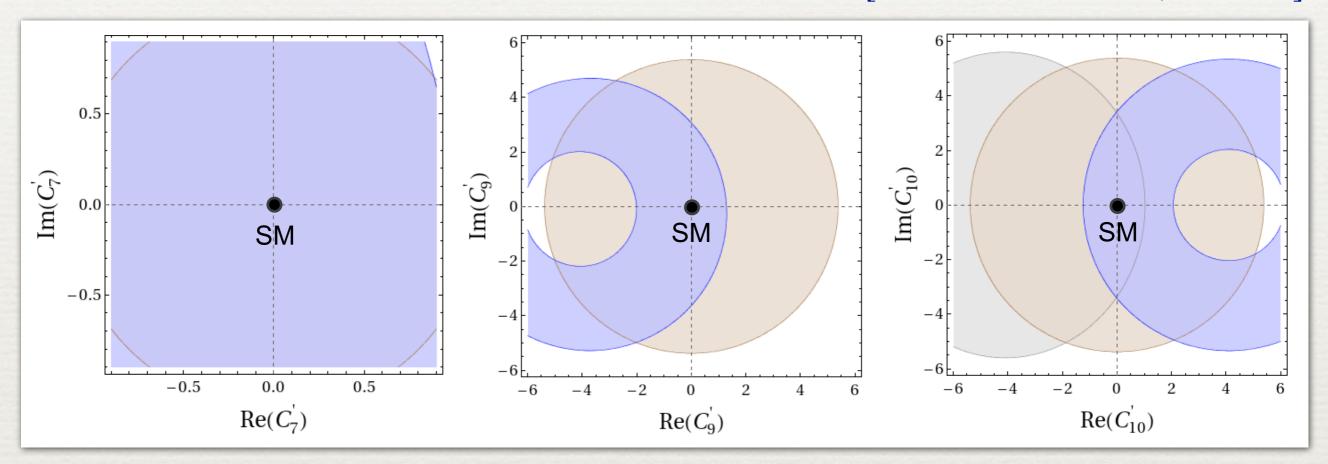
Production of Higgs boson times decay to electroweak dibosons reduced with respect to SM by about (10-15)%



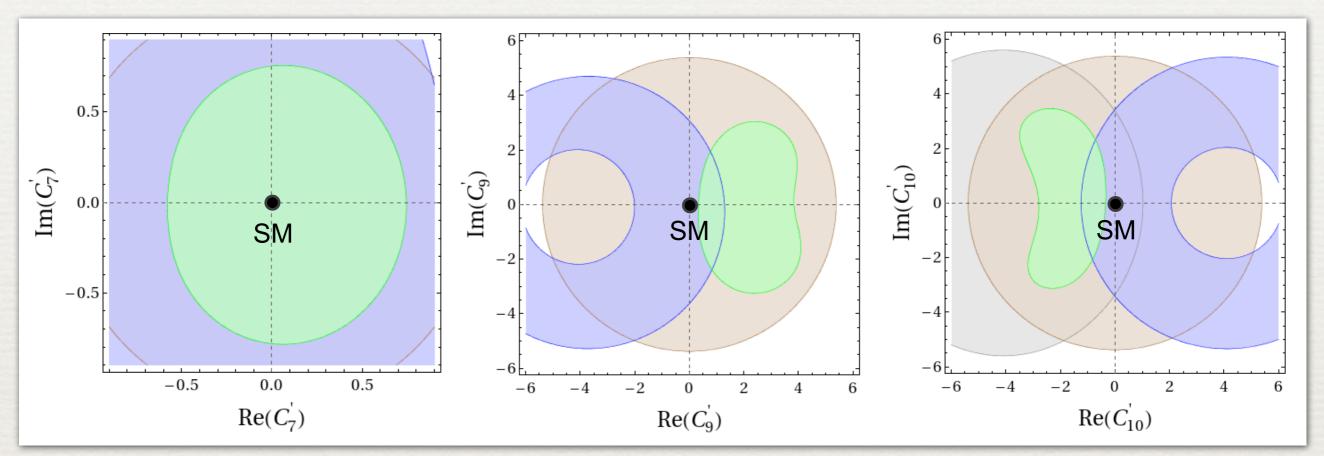
•
$$B_s \rightarrow \mu^+ \mu^-$$



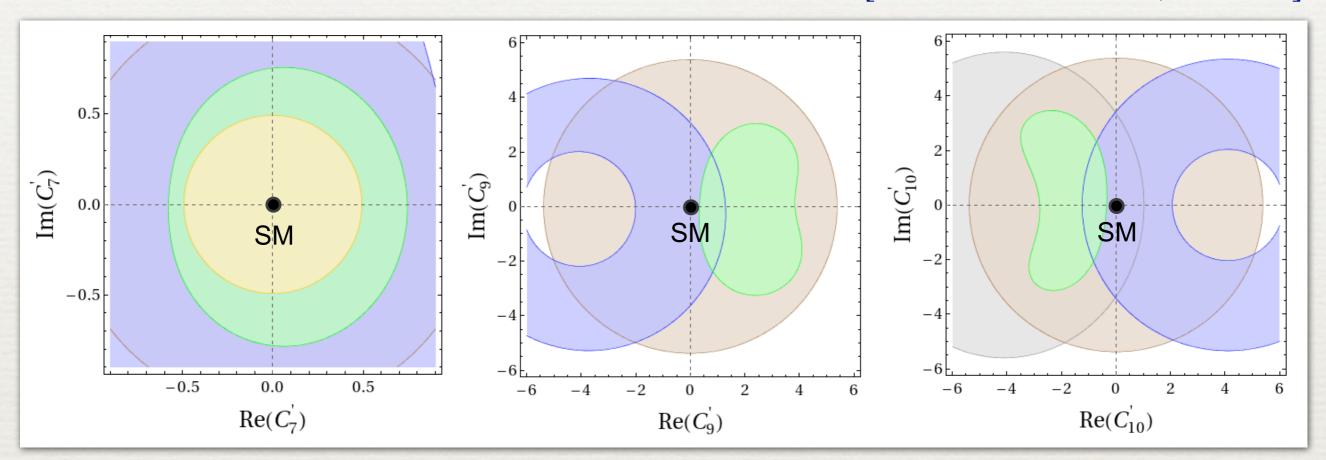
•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$



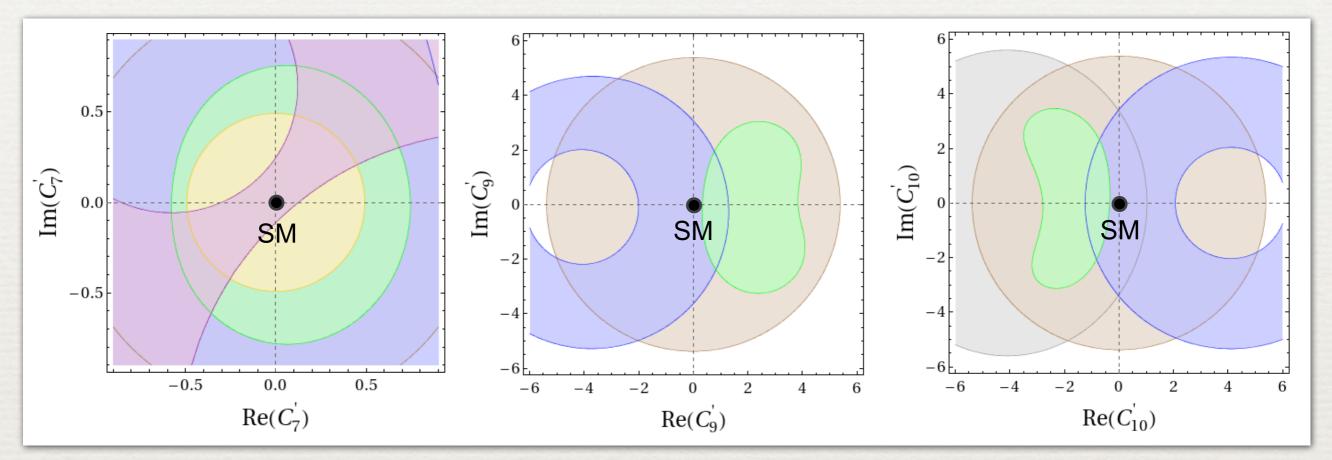
•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$ • $B \rightarrow K\mu^+\mu^-$



•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$ • $B \rightarrow K\mu^+\mu^-$ • $B \rightarrow K^*\mu^+\mu^-$

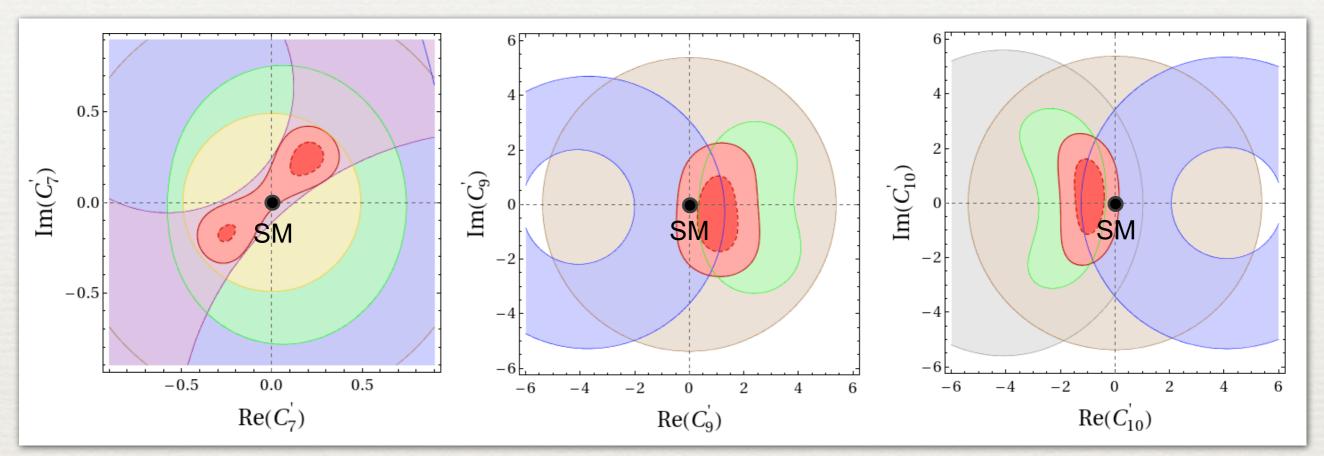


•
$$B_s \rightarrow \mu^+\mu^-$$
 • $B \rightarrow X_s\mu^+\mu^-$ • $B \rightarrow K\mu^+\mu^-$ • $B \rightarrow K^*\mu^+\mu^-$ • $B \rightarrow X_s\gamma$



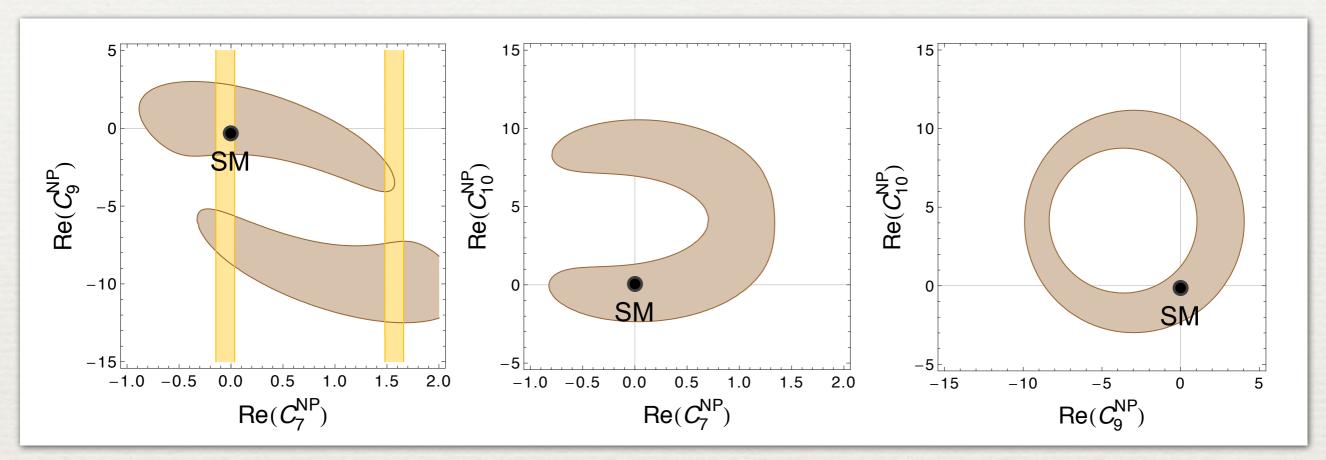
•
$$B_s \rightarrow \mu^+ \mu^-$$
 • $B \rightarrow X_s \mu^+ \mu^-$ • $B \rightarrow K \mu^+ \mu^-$ • $B \rightarrow K^* \mu^+ \mu^-$ • $B \rightarrow X_s \gamma$

• B
$$\rightarrow$$
 K* γ



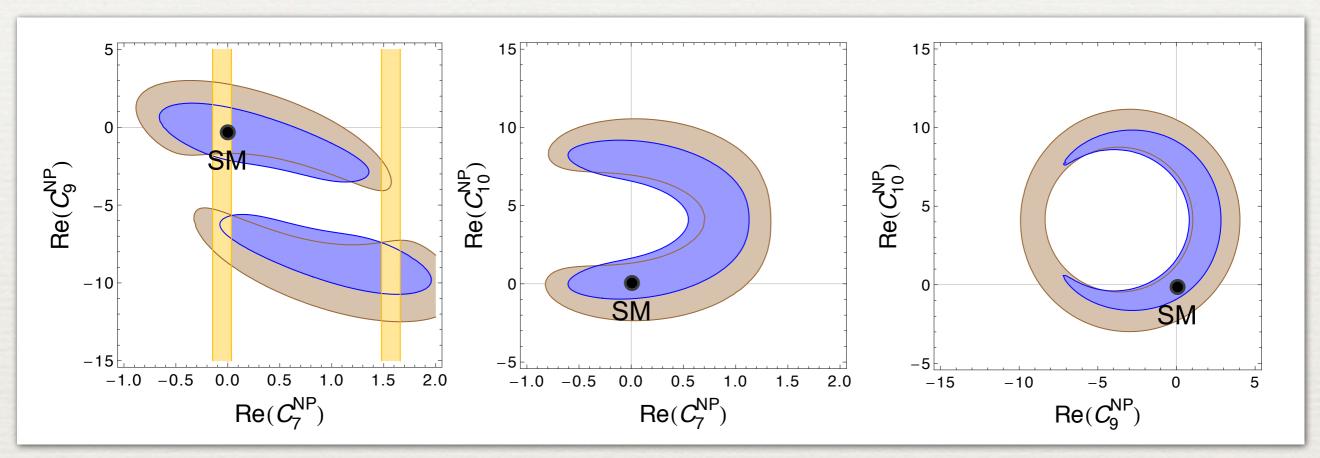
•
$$B_s \rightarrow \mu^+ \mu^-$$
 • $B \rightarrow X_s \mu^+ \mu^-$ • $B \rightarrow K \mu^+ \mu^-$ • $B \rightarrow K^* \mu^+ \mu^-$ • $B \rightarrow X_s \gamma$

- B \rightarrow K* γ
- Different exclusive decays provide complementary information

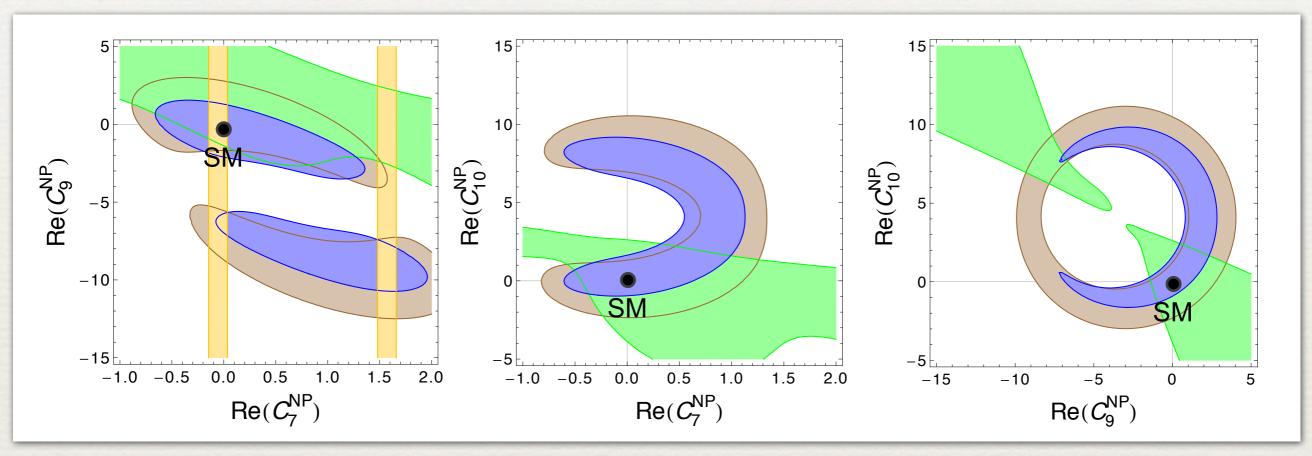


BR(
$$B \to X_s \ell^+ \ell^-$$
) BR($B \to X_s \gamma$)

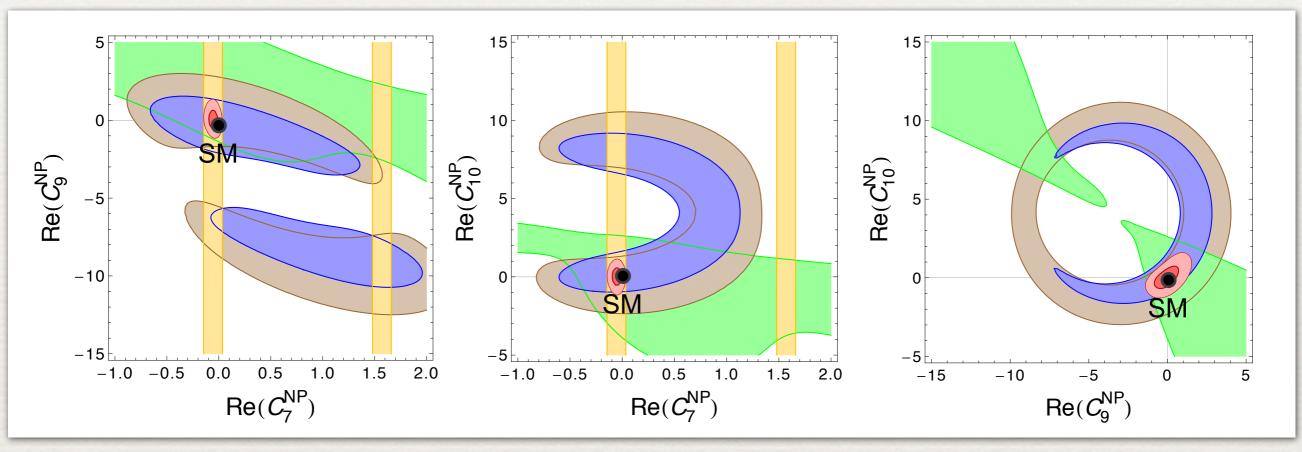
● Br($B \to X_s \mu^+ \mu^-$) Br($B \to X_s \gamma$)



BR(
$$B \to X_s \ell^+ \ell^-$$
)
BR($B \to X_s \gamma$)
BR($B \to K^* \mu^+ \mu^-$)
Br($B \to X_s \mu^+ \mu^-$)
Br($B \to X_s \gamma$)
Br($B \to K^* \mu^+ \mu^-$)



BR(
$$B \to X_s \ell^+ \ell^-$$
)
BR($B \to X_s \gamma$)
BR($B \to K^* \mu^+ \mu^-$)
Br($B \to X_s \gamma$)
BR($B \to K^* \mu^+ \mu^-$)
Br($B \to K^* \mu^+ \mu^-$)

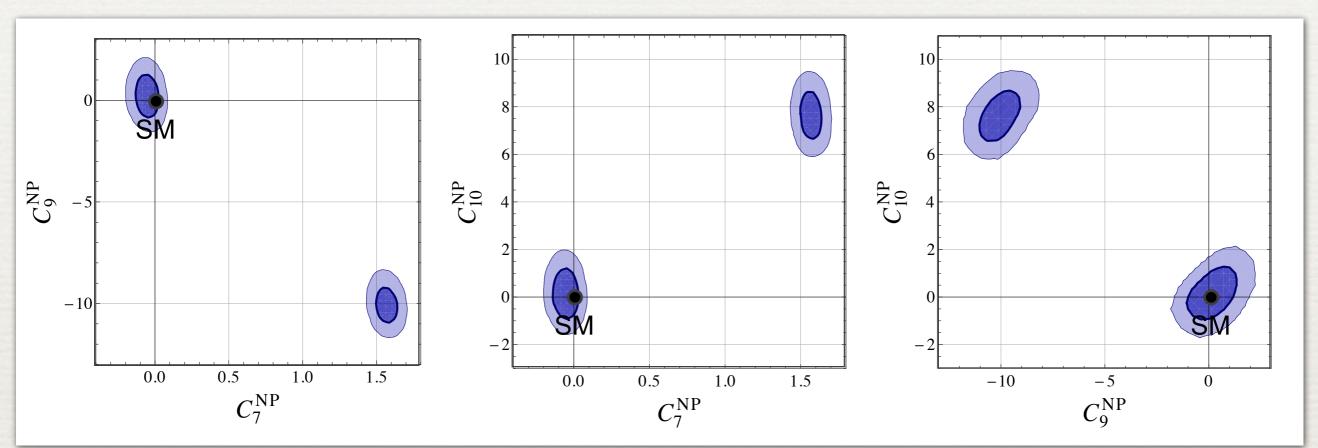


BR(
$$B \to X_s \ell^+ \ell^-$$
)
BR($B \to X_s \gamma$)
BR($B \to K^* \mu^+ \mu^-$)
Br($B \to X_s \mu^+ \mu^-$)

- $B \to K^* \mu^+ \mu^-$ data exclude various "mirror solutions"
- Exclusive $b \rightarrow s\mu^+\mu^-$ data (in particular angular distributions) breaks degeneracies & excludes various mirror solutions

Disfavored Mirror Solutions

[Altmannshofer, Paradisi & Straub, 1111.1257]



Flipped-sign solutions:

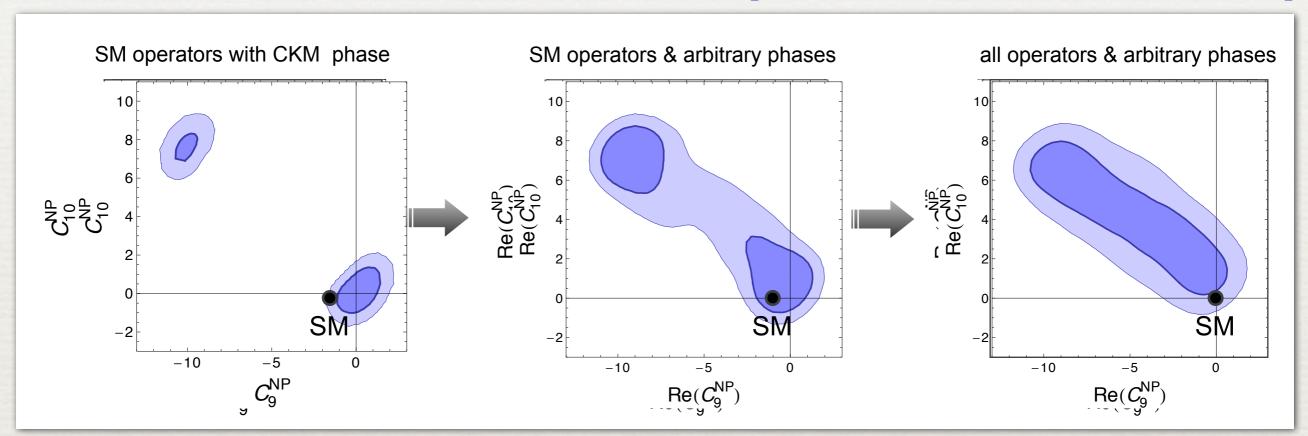
$$C_{7,9,10} = -C_{7,9,10}^{SM}$$
 cannot be excluded, but ...

►
$$C_7 = -C_7^{SM}$$
 disfavored by $Br(B \rightarrow X_s \mu^+ \mu^-)$

C_{9,10} = -C_{9,10} S_M disfavored by A_{FB}(B
$$\rightarrow$$
 K* μ + μ -)

Impact of Assumptions on Constraints

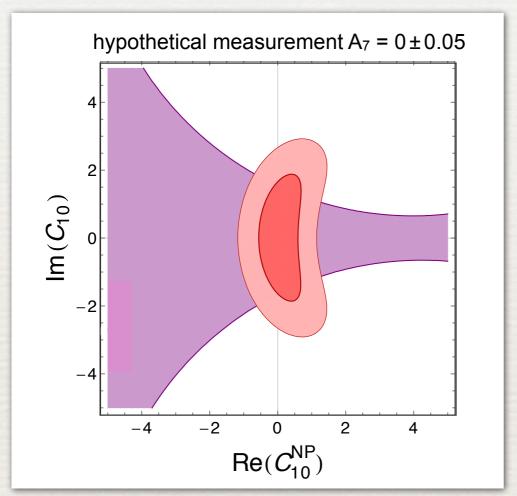
[Altmannshofer, Paradisi & Straub, 1111.1257]



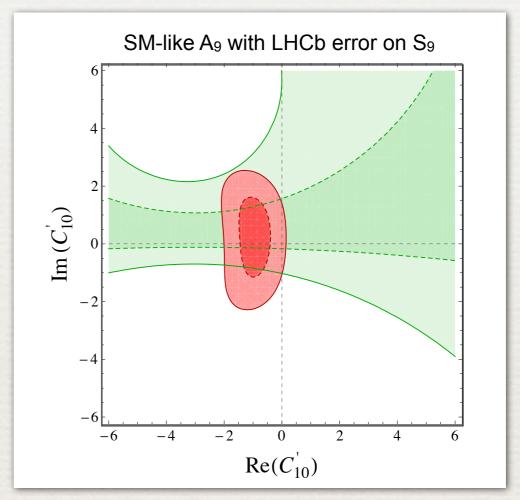
Constraints significantly weakened by allowing for additional phase and/or chirality-flipped operators. Need more data (in particular on CP-violating observables) to break degeneracies

Future (?) Impact of CP-violating Observables

[Straub, talk at Moriond EW 2012]



[Altmannshofer & Straub, 1206.0273]



< 0.1 would give a valuable constraint

CP-violating observables such as A₇ & A₉ provide constraints that are orthogonal in plane of Wilson coefficients to those of CP-conserving observables like A_{FB}, F_L, S₃, ...