

The SuperB Factory

Fabrizio Bianchi University of Torino and INFN-Torino

Rencontres du Vietnam Beyond The Standard Model of Particle Physics Qui Nhon, Vietnam July 15-21, 2012

ALMA UNIVERSITAS TAURINENSIS

DEGLIST

DITORINO

Outline

- The Physics Case.
- The Machine.
- The Detector.
- The SuperB Timeline.
- Conclusions.

Introduction

- Current flavor physics landscape is defined by BaBar, Belle, CDF, DO, and LHCb results.
 - Triumph of the CKM paradigm.
 - Indirect constraints on New Physics.
- First collision in SuperB will be in 2017 and the first full run is expected in 2018.
 - LHCb will have re-defined some areas of Flavor Physics.
 - LHC may (or may not) have found New Physics.
 - In both scenarios SuperB results can be used to constrain Flavor Dynamics at high energy

The Energy Scale of NP: Λ_{NP} (1)

- SuperB does not operate at High Energy.
 - What's the point of having it?
- Two paths in the quest for NP:
 - The relativistic path:
 - Increase the energy and look for direct production of new particles.
 - The quantum path:
 - Increase the luminosity and look for effects of physics beyond the standard model in loop diagrams.
- Model dependent indirect searches for NP at SuperB reach higher scales then can be attained at LHC.
 - B mixing and top: everyone knew the top was light until ARGUS found B mixing to be large.

The Energy Scale of NP: Λ_{NP} (2)

- Example: MSSM.
 - Simple, constrained by LHC data, but general enough to illustrate the issue:

- In many NP scenarios the energy frontier experiments will probe diagonal elements of mixing matrices.
- Flavor experiments are required to probe off-diagonal ones.

Expected data sample for SuperB

- Y(4S) region:
 - $75ab^{-1}$ at the $\Upsilon(4S)$
 - Also run above / below the $\Upsilon(45)$
 - ~75 x10⁹ B, D and τ pairs (6 years run)

ψ(3770) region:

 1 ab⁻¹ at threshold
 Also run at nearby resonances
 ~3.6 x 10⁹ D pairs
 (< 1 year run)

Super B Physics Program in a Nutshell

- Test of CKM Paradigm at 1% level.
- B rare decays
- Lepton Flavor Violation.
- B_s Physics.
- Electro-Weak measurements.
- Charm Physics.
- New hadrons (X, Y, Z States).

Require Lattice QCD improvements

Test of CKM Paradigm

- $-\sigma(\beta)=0.1^{\circ}$
- $-\sigma(\gamma) = 1-2^{\circ}$
- Cabibbo-Kobayashi-Maskawa Matrix Elements

$$-|V_{ub}|$$
: Incl. σ = 2%; Excl. σ = 3%

$$-|V_{cb}|: \sigma = 1\%$$

- $|V_{us}|: Can be measured precisely using <math>\tau$ decays
- $|V_{cd}|$ and $|V_{cs}|$: can be measured at/near charm threshold.

• SuperB measures the sides and angles of the Unitarity Triangle

Time Dependent Analysis: BaBar vs SuperB

Changes in two main ingredients:

- Δt resolution: SuperB boost < BaBar boost -> smaller Δz , worst Δt .
 - To cure this:
 - Add SVT layer 0, reducing SVT inner radius from 3.32 cm to 1.60 cm.
 - Reduce beam spot size.
 - Lower material budget in the beam pipe.
 - Preliminary studies: Δt determined with comparable precision wrt BaBar
- Flavor tagging algorithm:
 - BaBar: Neural Network approach to isolate high momentum lepton and K and soft π (from D* decay)
 - Figure of merit: $Q = \varepsilon_{tag} (1 2\omega)^2$
 - ε_{tag} = tagging efficiency, ω =mistag probability
 - Resolution on S and C: $\sigma_{S,C} \propto \frac{1}{\sqrt{Q}}$
 - SuperB: expect to increase Q thanks to larger tracking coverage, improved PID, better vertexing

CKM measurements: SuperB vs. LHCb

Observable/mode	Current (nov	v) LHCb	(2017)	SuperB	(2021)	LHCb upgrade (2030?)	Theory	
α								LHCb can only use ρπ
β from $b \rightarrow c \overline{c} s$								
$B_d o J/\psi \pi^0$								βtheory error B _d
$B_s ightarrow J/\psi K_S^0$								βtheory error B _s
γ								
$ V_{ub} $ inclusive								Need an e ⁺ e ⁻ environment to do a precision
$ V_{ub} $ exclusive								measurement using semi-
$ V_{cb} $ inclusive								leptonic B decays.
$ V_{cb} $ exclusive								

Lepton Flavor Violation

- v mixing leads to a extremely low level of charged LFV (10⁻⁵⁰).
- Enhancements are possible in some new physics scenarios.

EW Measurements

▶ sin²θ_w can be measured with polarised e⁻ beam:

√s=Y(4S) is theoretically clean, c.f. b-fragmentation at Z pole. Measure LR asymmetry

at the Y(4S) to same precision as LEP/SLC at the Z-pole.

Complements

measurements planned/ underway at lower energies (QWeak/MESA).

B_s Physics

• Can cleanly measure A_{SL}^{s} using Y(5S) data

$$A_{\rm SL}^s = \frac{\mathcal{B}(B_s \to \overline{B}_s \to D_s^{(*)-} l^+ \nu_l) - \mathcal{B}(\overline{B}_s \to B_s \to D_s^{(*)+} l^- \nu_l)}{\mathcal{B}(B_s \to \overline{B}_s \to D_s^{(*)-} l^+ \nu_l) + \mathcal{B}(\overline{B}_s \to B_s \to D_s^{(*)+} l^- \nu_l)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}.$$
$$\sigma(A_{SL}^s) \sim 0.004 \text{ with a few } ab^{-1}$$

- SuperB can also study rare decays with many neutral particles, such as $B_s\to\gamma\gamma$, which can be enhanced by SUSY.

Golden Measurements: SuperB vs. LHCb

Charm at SuperB

- At the Y(4S) with 75 ab⁻¹:
 - Large improvement in D⁰ mixing and CPV: factor 12 improvement in statistical error wrt BaBar (0.5 ab⁻¹).
 - Time-dependent measurements will benefit also of an improved (2x) D⁰ proper-time resolution.
- At the Ψ(3770) with 1 ab⁻¹:
 - $D\bar{D}$ coherent production with 100x BESIII data and CM boost up to $\beta\gamma$ =0.56.
 - Almost zero background environment.
 - Possibility of time-dependent measurements exploiting quantum coherence.
 - Study CPV with Flavor and CP tagging.
 - Constrain Dalitz model and strong phases

Charm Mixing

A. Bevan- G. Inguglia- B. Meadows: *Phys. Rev. D* 84, 114009, arXiv:1106.5075

Time Dependent CP Violation in Charm

A time-dependent analysis is a tool to look for *CPV in charm and will* open the door to measurements of the properties of the charm unitarity triangle.

The Machine

- SuperB is a 2 rings, asymmetric energies (e⁻@ 4.18, e⁺@ 6.7 GeV, βγ=0.237) collider with:
 - large Piwinski angle and "crab waist" (LPA & CW) collision scheme
 - ultra low emittance lattices ideas taken from ILC design
 - longitudinally polarized electron beam
 - target luminosity of 10^{36} cm⁻² s⁻¹ at the Y(4S)
 - possibility to run at τ /charm threshold still with polarized electron beam with L = 10^{35} cm⁻² s⁻¹
- Design criteria :
 - Minimize building costs
 - Minimize running costs (wall-plug power and water consumption)
 - Reuse of some PEP-II B-Factory hardware (magnets, RF)
- SuperB can also be a good "light source": work is in progress to design Synchrotron Radiation beamlines (collaboration with Italian Institute of Technology)

Baseline Collider parameters

		Base Line		
Parameter	Units	HER (e+)	LER (e-)	
LUMINOSITY (10 ³⁶)	cm ⁻² s ⁻¹			
Energy	GeV	6.7	4.18	
Circumference	m	1258.4		
X-Angle (full)	mrad	60		
Piwinski angle	rad	20.80	16.91	
β _x @ IP	cm	2.6	3.2	
β _v @ IP	cm	0.0253	0.0205	
Coupling (full current)	%	0.25	0.25	
ϵ_x (without IBS)	nm	1.97	1.82	
ϵ_x (with IBS)	nm	2.00	2.46	
ε _y	pm	5	6.15	
σ _x @ IP	μm	7.211	8.872	
σ _y @ IP	μm	0.036	0.036	
Σ _x	μm	11.433		
Σ _y	μm	0.050		
σ_L (0 current)	mm	4.69	4.29	
σ_L (full current)	mm	5	5	
Beam current	mA	1892	2447	
Buckets distance	#	2		
Buckets distance	ns	4.20		
lon gap	%	2		
RF frequency	MHz	476		
Harmonic number		1998		
Number of bunches		465		
N. Particle/bunch (10 ¹⁰)		5.08	6.56	
Tune shift x		0.0026	0.0040	
Tune shift y		0.1067	0.1069	
Long. damping time	msec	13.4	20.3	
Energy Loss/turn	MeV	2.11	0.865	
σ_{E} (full current)	δE/E	6.43E-04	7.34E-04	
CM σ _E	δE/E	5.00E-04		
Total lifetime	min	4.23	4.48	
TotaFRBPawehi	MW	16.38		

Baseline peak luminosity at Y(4s) is 10 36 cm⁻² s⁻¹. It can be increased by adding RF power up to a factor of 4.

The runs near charm threshold $\Psi(3770)$ pay a factor O(10) in luminosity.

At charm threshold the boost($\beta\gamma$) can be increased up to 0.5 for time dependent measurements.

The Cabibbo Lab

SuperB Detector Design

Detector Evolution: from

- Babar and Belle designs have proven to be very effective for B-Factory physics. Follow the same ideas for SuperB detector. •

 - Try to reuse same components as much as possible.
- Main issues: •
 - Machine backgrounds somewhat larger than in Babar/Belle.
 - Beam energy asymmetry a bit smaller. Strong interaction with machine design.
- A SuperB detector is possible with today's technology. Baseline is reusing large (expensive) parts of Babar. •

 - Quartz bars of the DIRC.
 - Barrel EMC CsI(Tl) crystal and mechanical structure.
 - Superconducting coil and flux return yoke.
- Some areas require moderate R&D and engineering developments to improve performance: •
 - Small beam pipe technology.

 - Thin silicon pixel detector for first layer. Drift chamber CF mechanical structure, gas and cell size.
 - Photon detection for DIRC quartz bars. —
 - Forward PID system (TOF or focusing RICH). Forward calorimeter crystals (LSO). —
 - —
 - Minos-style scintillator for Instrumented flux return.
 - Electronics and trigger need to revise Bfactory " $\frac{1}{2}$ -track" trigger style.
 - Computing: has to handle a massive data amount.

SuperB Computing Model

- Baseline is an extrapolation of BaBar computing model to a luminosity 100 times larger.
- Resource estimate:
 - Storage grows from O(50) PB to O(600) PB in 6 years.
 - CPU grows from 500 to 12,000 KHepSpec in 6 years.
- Question & challenges:
 - Is Moore's law still valid ?
 - Code must be optimized for running on multi/many core architectures.
 - How to access efficiently and reliably hundreds of PB of data?
 - Identify a strategy to avoid I/O bottleneck.
 - How to share and replicate data among sites.
 - How use efficiently and reliably hardware resources widely dispersed ?
 - A resource management framework.
 - R&D program is in place to address these issues.

Conclusions

- SuperB project has been approved and funded by the Italian Government.
- The site has been selected. The construction preparatory work has started.
- The consortium "Nicola Cabibbo Laboratory" has been formed to manage the SuperB project.
- A very ambitious and innovative machine, stateof-the art detector, and an aggressive planning.
- First beams expected in 2017.

Backup

Recoil Analysis Technique

 Breco: full (partial) reconstruction of one B into a hadronic (semi-leptonic) final state
 Brecoil: look for the signal signature, e.g. K^(*) not accompanied by additional (charged+neutral) particles + Missing Energy

Recoil technique at B-Factories:

 search for rare decays (~10⁻⁵) with missing energy

(Not possible at hadronic machines)

 Several benchmark channels at SuperB: B→τν, B→K^(*)νν, ...

LFV in τ Decays with Polarization

How to get 100 times more luminosity?

$$L = 2.17 \times 10^{34} \frac{n\xi_y EI_b}{\beta_y^*}$$

- ξ_y Vertical beam-beam parameter
- I_b Bunch current (A)
- n Number of bunches
- β_{y}^{*} IP vertical beta (cm)
- E Beam energy (GeV)

Present day B-factories

	PEP-II	KEKB
E(GeV)	9x3.1	8x3.5
l _b	1x1.6	0.75x1
n	1700	1600
I (A)	1.7x2.7	1.2x1.6
β_v^* (cm)	1.1	0.6
ξv	0.08	0.11
L ['] (x10 ³⁴)	1	2

Answer:	
Increase	۱ _b
Decrease	β _v *
Increase	ξy
Increase	n

A New Idea

- Pantaleo Raimondi came up with a new scheme to attain high luminosity in a storage ring:
 - Change the collision so that only a small fraction of one bunch collides with the other bunch
 - Large crossing angle
 - Long bunch length
 - Due to the large crossing angle the effective bunch length (the colliding part) is now very short so we can lower β_y^* by a factor of 50
 - The beams must have very low emittance like present day light sources
 - The x size at the IP now sets the effective bunch length
 - In addition, by crabbing the magnetic waist of the colliding beams we greatly reduce the tune plane resonances enabling greater tune shifts and better tune plane flexibility
 - This increases the luminosity performance by another factor of 2-3

How the Crabbed Waist Works

Crab-sextupoles off: waist line is orthogonal to the axis of the beam

Crab-sextupoles on: waist moves parallel to the axis of other beam: maximum particle density in the overlap between bunches

All particles in both beams collide in the minimum β_y region, with a net luminosity gain

		Base	Line	Low Emittance		High Current		τ/charm	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)
LUMINOSITY (10 ³⁶)	cm ⁻² s ⁻¹		1		1		1		
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	m	1258.4		1258.4		1258.4		1258.4	
X-Angle (full)	mrad	60		60		60		60	
Piwinski angle	rad	20.80	16.91	29.42	23.91	13.12	10.67	8.00	6.50
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
ϵ_x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82
ϵ_x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16
σ _x @ IP	μm	7.211	8.872	5.099	6.274	10.060	12.370	18.749	23.076
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092
Σ _x	μm	11.433		8.085		15.944		29.732	
Σ _y	μm	0.050		0.030		0.076		0.131	
σ_{L} (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36
σ_L (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	2		2		1			
Buckets distance	ns	4.	20	4.20		2.10		2.10	
lon gap	%	i	2	2		2		2	
RF frequency	MHz	47	76	476		476		476	
Harmonic number		1998		1998		1998		1998	
Number of bunches		465		465		931		931	
N. Particle/bunch (10 ¹⁰)		5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37
Tune shift x		0.0026	0.0040	0.0020	0.0031	0.0053	0.0081	0.0063	0.0096
Tune shift y		0.1067	0.1069	0.0980	0.0981	0.0752	0.0755	0.1000	0.1001
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.166
σ_{E} (full current)	δE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.94E-04	7.34E-04
CM σ _E	δE/E	5.00	E-04	5.00E-04		5.00E-04		5.26E-04	
Total lifetin leianchi	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79
Total RF Power	MW	16	.38	12.37		28.83		2.81	

SuperB Parameters Table

Tau/charm threshold running at 10³⁵

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

Baseline: •Higher emittance due to IBS •Asymmetric beam currents

RF power includes SR and HOM