Future Detectors for Astrophysics: Some valuable lessons learned from GLAST

Peter F. Michelson Department of Physics & Kavli Institute for Particle Astrophysics and Cosmology Stanford University

6th Hiroshima Symposium, "AbeFest" September 11, 2006

Why study γ 's?

- γ rays offer a direct view into Nature's largest accelerators.
- the Universe is mainly transparent to γ rays: can probe cosmological volumes. Any opacity is energy-dependent ($\gamma + \gamma -> e^+ + e^-$).
- conversely, γ rays readily interact in detectors, with a clear signature.
- γrays are neutral: no complications due to magnetic fields. Point directly back to sources, etc.

Two GLAST instruments:

- LAT: 20 MeV >300 GeV
- GBM: 10 keV 25 MeV
- Launch: Autumn 2007
- 5-year mission (10-year goal)

The Large Area Telescope

GLAST LAT Collaboration

Astrophysics – Particle Physics Partnership

United States

- California State University at Sonoma
- University of California at Santa Cruz Santa Cruz Institute of Particle Physics
- Goddard Space Flight Center Laboratory for High Energy Astrophysics
- Naval Research Laboratory
- Ohio State University
- Stanford University (SLAC and HEPL/Physics)
- University of Washington
- Washington University, St. Louis

<u>France</u>

▶ IN2P3, CEA/Saclay

<u>Italy</u>

► INFN, ASI

Japanese GLAST Collaboration

- Hiroshima University
- ▶ ISAS, RIKEN

Swedish GLAST Collaboration

- Royal Institute of Technology (KTH)
- Stockholm University

LAT possible because of partnership between

- engineers & scientists: from particle physics & astrophysics,
- laboratories:
 SLAC, GSFC, and collaborating labs
- agencies and institutes

GLAST development status

- assembly of all science instrument elements complete:
 - Large Area Telescope (LAT) undergoing instrument-level environmental test; delivery expected before end of September
 - GLAST Burst Monitor (GBM) delivered for observatory integration
- beam test of LAT spare flight modules underway at CERN
- Observatory integration and test Fall 2006 to Fall 2007
- first GLAST International Science Symposium will be at Stanford University, Feb 5-8, 2007
- GLAST launch in last quarter of 2007
- Science operations begin within 60 days of launch

LAT Silicon Tracker

team effort involving ~70 physicists and engineers from Italy (INFN & ASI), the United States, and Japan

LAT Calorimeter

team effort involving physicists and engineers from the United States, France (IN2P3 & CEA), and Sweden

LAT Anti-Coincidence Detector

team effort involving physicists and engineers from Goddard Space Flight Center, SLAC, and Fermi Lab

ACD before installation of Micrometeoroid Shield ACD with Micrometeoroid Shield and Multi-Layer Insulation (but without Germanium Kapton outer layer)

LAT is assembled

P. Michelson

ID: 135004857-5

3692.307861 mm

GLAST & DOE-NASA-International Interactions

Considerations:

- differences in strategic planning and science peer review processes
- funding sources; phasing of funds, "colors" of money; definition of significant project milestones
- allocation and management of contingency
- oversight: Joint? Is one agency the lead?
- Project Management
- Project Reviews

NASA and DOE fund LAT (in US)

Participation from France, Italy, Japan, and Sweden

Agency/Cultural Differences

• At the risk of oversimplification:

	DOE/Particle Physics	NASA/Space Astrophysics
Scale of Projects	Several; can manage large projects	Several; can manage large projects
Role of scientists in design, construction	large role in designing/building/testing scientific apparatus	large role in designing, building, & testing scientific apparatus; but S/C and integration/test almost always controlled by engineering org. <u>QA is a big driver.</u>
Size of Collaborations	Typically large (>200); many institutions	Typically smaller (<50); fewer institutions
Data "Rights"	Access to data typically limited to collaboration; publications controlled by collaboration review board	Historically, access limited to instrument team for \leq 1 yr; current trend: all data public immediately or within a few months
Funding for scientists	For scientists at universities, funding from base program support; laboratory (ie, SLAC) scientists supported on lab operating budgets	Mission-oriented; <u>scientists on instrument</u> <u>team supported by project funds (full cost</u> <u>accounting)</u> ; data analysis support to community through Guest Investigator Program

		DOE/Particle Physics	NASA/Space Astrophysics
fur cor and	nding, ntingency mgmt d overruns	strong emphasis on evaluating adequacy of contingency when project baselined; typically, project manages contingency and also controls cost by controlling scope rebaselining to deal with cost growth is strongly discouraged science preparation and "commissioning" are not part of project cost; provides some flexibility in controlling project costs	cost growth is more common; contingency held by project management (for GLAST, by GSFC), but often used to fix problems in other projects; in early phases, funding profiles typically not driven by minimizing overall cost (i.e. fit in a wedge); "full" cost accounting on projects; i.e. at GSFC, civil servants now full-cost accounted; scientists part of project cost
for	eign agreements	lab and collaboration take the lead, negotiate MoAs	agency-to-agency agreements; LoAs, formal state department MoUs.

Lesson #1: Avoid cultural judgments and oversimplifications such as "the way we do things in space science / particle physics {pick one}.."

Both parties should have something of value (other than money) to contribute that the other party recognizes and also values.

GLAST Large Area Telescope made possible by important and complementary contributions from the HEP and space astrophysics communities; not possible without both

All-Sky Simulation of 55 days of GLAST observations

Science opportunities & multiwavelength needs

Many opportunities for exciting discoveries:

- determine the origin(s) of the high-energy extragalactic diffuse background
- measure extragalactic background light to z > 3
- detect γ-ray emission from clusters of galaxies; cosmic-ray acceleration on large scales
- detect γ-rays from Ultra-Luminous Infrared Galaxies; cosmic ray acceleration efficiency and star formation rate
- detect high-latitude Galactic Inverse-Compton emission and thereby measure TeV-scale CR electrons in the Galaxy
- study high-energy emission from Galactic pulsars
- the unknown!