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LHCb Silicon Detectors
Inner Tracker (IT 1-3)Trigger Tracker

(TT)

Vertex Locator
(VELO)

Martin van Beuzekom's talk at 9:20 tomorrow morning
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A Short History

● LHCb “classic”: 11 tracking stations
● each station: Inner & Outer Tracker
● Inner Tracker: some variety of

Micro-Pattern Gaseous Detector
(MSGC+GEM, 3GEM, Micromega, Microwire)

Once upon a time...

● adopted as baseline solution (for the 11-station detector) in May 2001
● Technical Design Report submitted in Nov 2002

2000: start to investigate viability of a silicon micro-strip Inner Tracker    

2002: experiment-wide effort to reduce material budget (LHCb “light”)
● reduce number of tracking stations from eleven to four
● the first of these all-silicon ( Trigger Tracker) 
● “Re-optimised Detector” Technical Design Report submitted in Sep 2003
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Inner Tracker
Three stations with four layers each:

Concerns in design phase:

● 1-sensor ladders above/below beam pipe
● 2-sensor ladders left/right of beam pipe

● material budget
- sensors as thin as possible
  320 μm for 1-sensor ladders
  410 μm for 2-sensor ladders
- supports / cooling etc

● cost (number of r/o channels)
- large pitch (197 μm)

● modularity (11 stations !)
~ 4.2 m², 504 silicon sensors,

336 modules, 130k readout strips
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Inner Tracker Station
Four individual detector boxes surrounding LHC beam pipe:
● mechanical support of detector modules
● cooling (front-end hybrids and ambient)
● thermally and electrically insulating box

Two support frames on precision rails:
● mechanical support of detector boxes, cables 
● retractable for detector maintenance
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Inner Tracker Station
Material budget per Inner Tracker station:
● active region: 2 - 2.5 % (dominated by silicon)
● frames:            ~ 6 %
● connectors:        ~ 4 %
● cables:             ~ 8 %
● “dead” material further out than active region 

(LHCb physics are forward peaked)

} inside LHCb
acceptance
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Trigger Tracker
One station with four detection layers:

Concerns in design phase:

● 7-sensor long “half-modules”
● 1-/2-/3- and 4-sensor long readout sectors
● all r/o hybrids at one end of the module
● “inner” r/o sectors: Kapton interconnects

● material budget: 
- r/o electronics outside acceptance

● cost (number of r/o channels)
- large pitch (183 μm)
- long strips (up to 37 cm)

● S/N for very long readout strips
~ 8.2 m², 896 silicon sensors,
280 r/o sectors, 143k r/o strips
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Trigger Tracker Station

Material budget inside acceptance:

Two half stations, retractable for detector maintenance:
● support rails, frames and cables
● cooling (front-end hybrids and ambient)
● thermally and electrically insulating box

- lightweight polyurethane foam sheets
  clad with thin aluminium / Kevlar foils
- one large volume when closed

} outside of LHCb acceptance
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Silicon Tracker Readout
“Beetle” front-end readout chip:

x 186

x 128

Vpre

Ipre

Vsha

Isha Ibuf

Mux

to comparator (digital out)

In Out

Front-end

Readout

Pipeline

● radiation-hard design in 0.25 µm CMOS
● analog pipeline, multiplexed analog readout 
● adjustable shaping time of ~ 25 ns (via Vfs)

to common LHCb
readout board
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100 m digital optical

5 m analog
copper

near detector:
~15 krad / 10 y

on detector:
<1 Mrad / 10 y

counting house

silicon
sensor

Digital optical readout link:
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Silicon Tracker R&D
Main concern: detector performance
● required sensor thickness for Inner Tracker
● S/N for long r/o strips of Trigger Tracker 

(up to 37 cm, read out at 25 ns !)
● signal integrity for Trigger Tracker 

readout sectors with Kapton interconnect

Infra-red laser test stand:
● pulsed infra-red laser, focussed to ~ 10 μm
● signal shape, charge sharing, CCE as function 

of inter-strip position of charge deposition  

Test beams (120 GeV/c pions from SPS):
● beam telescope to determine particle impact

position on detector under test to ~ 15 μm
● S/N and detection efficiency as function of inter-strip position
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Main Findings from R&D
1) S/N scales linearly with detector capacitance:
● no significant contribution from strip resistance

even for the longest readout strips (33 cm)
● confirmed by a combined SPICE simulation

of r/o strips and Beetle front-end amplifier
● careful: strong dependence on interplay between 

noise spectrum of detector (resonances) and 
bandwidth of amplifier  do not generalise !

2) significant loss of CCE in between strips:

(all for Vfs = 400 mV)

Discrete load capacitances:
ENC = 580 e- + 48.8 e-/pF

Test beam with long ladders:
ENC = 770 e- + 47.9 e-/pF

● independent of strip length and shaping time
● depends ~ linearly on (pitch-width) / thickness
● interpreted as being due to charge trapping 

at silicon bulk / oxide interface between strips
left strip right strip

sum of charges on 4 strips
3 x CMS-OB2, Vbias = 450 V

3) no deterioration of signal integrity due to Kapton interconnects
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Inner Tracker Production
Main production steps:
● position hybrid & pitch adaptor, 

glue them to the sandwich support 
● r/o functionality test
● position silicon sensor(s),

glue it/them to the support
● measure sensor alignment
● bond hybrid & pitch adaptor,  

bond bias and GND to the sensor
● r/o functionality and HV test
● bond all readout strips 
● 24h burn-in test: 

- IV curves, strip noise to identify bad strips (shorts, opens, pinholes)
- several temperature cycles between 20°C and 5°C
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Trigger Tracker Production
“Stage I” production steps:
● place seven sensors and lower hybrid

(use sensor edges for positioning)
● verify and correct alignment (CMM)
● glue support rails along the edges
● measure final sensor alignment
● glue bias voltage cable along back

of module, apply GND and bias
connections (using silver glue)

● bond sensor(s) to pitch adaptor
● 24h burn-in test: 

- IV curves, CCE curves, pulse-shape scans  
- analysis of strip noise to identify bad strips
- several temperature cycles between ~20°C and 5°C
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Trigger Tracker Production
“Stage II” production steps:
● glue Kevlar protection caps over bonds
● assemble and bond Kapton interconnect 

cable and upper hybrid
● mount interconnect & hybrid onto 

detector module, bond cable to sensor
● solder GND connections to lower hybrid
● 36h burn-in test with similar programme 

as after stage I

“Stage III” production steps:
● for modules with three read-out 

sectors, repeat stage-II steps 
for 2nd interconnect and 3rd hybrid

● 36h burn-in test with similar programme as after stage I and II
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Burn-In
Example: TT burn-in test stand
● fully automatic operation (LabView)
● temperature cycling between r.t. and 5°C
● continuous monitoring of leakage currents
● pulsed IR diodes to generate charge 

at defined positions on the sensors 
● also: excercise final readout link
● also: test final cooling concept
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Comments on Production
Module production largely “manual” and run by small production teams
● IT: 6 physicists / technicians from Lausanne and Santiago de Compostela
● TT: 5 physicists / technicians from Uni Zürich

Small team means flexibility in decision making processes
● short production meetings to discuss problems 

and decide the programme for the coming week
● lots of ad-hoc decisions in the production room

● hybrids from MPI Heidelberg, silicon sensors (from HPK) via Uni Zürich
● IT assembly in Lausanne, bonding and testing at CERN (40 km distance)
● TT production entirely at Uni Zürich

Small team means simple logistics

● we have been lucky no accidents happened (except for one broken hand)

But it also means lack of redundancy in manpower and equipment



13.09.2006 O. SteinkampLHCb Silicon Tracker (17/22)

Comments on Planning
Projected production speeds could be reached and maintained
● Inner Tracker: 

- producing 12 modules / week using five production templates in parallel
- currently about 230 modules out of 380 fully produced and tested 

● Trigger Tracker: 
- produced 5 modules / week in stage-I, using two templates in parallel
- stage-I production finished last week, stage-II/III by end October

● as expected, testing takes up more resources than the actual production

● unforeseen problems when building the first “final” modules
● problems at vendors when going from prototype to series production
● training of unexperienced bonders can take a lot of time
● should have known all this and reserved more time in our project planning
● finally we are okay since LHC schedule slipped by a similar amount of time

Transition from prototyping to production much slower than expected
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Module Quality
Fraction of “problematic” modules so far quite low
● 5 (IT) + 4 (TT) modules lost (damaged sensor, pitch adaptor or r/o hybrid)
● 1 + 0 modules with more than 2 bad strips (could be used if needed)
● 1 + 3 modules probably repairable (strange IV curve or r/o problem)
● planned for 50 + 20 spare modules (15 %)

- hopefully no need to install these problematic modules
- have a closer look at them once the main production is finished

Fraction of bad strips so far quite low (“bad” = interrupt, short, pinhole)
● IT: 82 out of ~ 85 k tested
● TT: 141 out of ~ 134 k tested

Leakage currents very low
● normally < 500 nA per sensor

at 500 V (HPK sensors !!!!)
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Module Quality

● excellent relative positioning 
of the sensors on a module 

● each module can be treated as 
one unit in software alignment,
no need to align individual sensors

● positioning of sensors on supports 
worse than what we had hoped for 
(true for IT, not measured for TT)

● mainly due to worse than expected 
tolerances on production templates

● each module has to be aligned 
individually in software

● no problem: had always been foreseen

Positioning precision (benchmark: expected spatial resolution of ~ 50 μm)
mean
rms

-1.27
7.63TT

sensor position
w.r.t. the

positioning pins
onto which the 
module will be 

mounted

IT
mean
rms

-4.49
47.3

Offset [µm]

mean
rms

0.0017
0.0053TT

(=8.7µm/10cm)
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Silver Glue

● TT: use dedicated bias voltage cable along the back of the module
● used silver glue to connect bias voltage to the backplane

- TT9-75: Elecolit 340 (one-component “silver paint”)
- TT76-155: Elecolit 325 (two-component epoxy)

● measured resistance of all connections
- shortly after module production
- again after a few weeks / months

● find significant increase of resistance
- for both types of silver glue
- typically a few hundred Ohms now
- but the trend is worrisome

● decided to provide additional bond connections on all sensors

Latest “discovery”: silver glue on aluminium is a bad idea

(not entirely unexpected since similar effects were already observed by CMS)

initial “now”

entries
mean
rms
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2.7
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mean
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129
827
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Summary

● underestimated the transition from prototyping to production
 should have tried to build a “final” module much earlier on

● may have spent too much effort on optimisation of sensor thickness (IT)
 material is anyway dominated by supports, cooling, cables
 having two types of sensors (320/410 μm) is a complication

● ended up having two types of TT modules for no good reason at all
 unnecessarily complicates logistics, production of spares

Where we could have done better:

What we might have gotten right:
● relatively simple and robust module design (despite a few “ad-hoc” fixes)
● good sharing of responsibilities between participating groups
● entire production of all r/o hybrids in a single company (RHe, Germany)
● investment in automated burn-in test stands, using final components 
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Summary

● finish module production and testing (TT: October, IT: February)
● station assembly and installation in the experiment (TT: Dec, IT: Dec-Feb)
● detector integration and “commissioning” without beam (Jan-Aug) 
● hall closes end Aug, single p beam Nov/Dec, first p-p collisions end 2007

Main tasks for the coming year:

Other activities:
● TT support frames installed 
● IT support frames assembled

and to be installed soon
● IT detector boxes being assembled
● TT detector station being assembled
● r/o electronics being produced
● work on monitoring / control software
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Noise Model

● G(s): transfer function of shaper
● C  : load capacitance
● Vs : serial noise of input FET
● Ip : parallel noise from leakage currents

Charge-sensitive amplifier: 

ENC2 = ∫
0

∞ 1
2
⋅  8 kT

3 gm

 C  Cf 
2 2 2 eIp  ⋅ ∣L V0⋅v t∣

V0

d

● calculate serial noise using measured Beetle response function V0·v(t)
=> good agreement with values measured on a test bench

Vfs [mV]

calculated serial noise [e/pF]
measured serial noise [e/pF] 52.6 51.9 49.4 45.2

51.2 50.9 49.0 43.0
0 100 400 1000
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Calculated Signal Shapes
Spice simulation of long readout strips (10 RLC elements / cm):
● Example: 3 sensor long CMS-OB2 ladder with Kapton interconnect cable

=> R,L,C determined separately for sensor and interconnect cable !
● Beetle output signal determined using measured Beetle response function

=> signal from far end: peaks ~ 3 ns later, pulse height is ~ 4% smaller

Signal at Beetle output:Signal at Beetle input:

- from far end of sensors
- from near end of sensors
- for discrete capacitor
o measured in laser test stand
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Serial Noise
Noise spectrum from the same spice simulation:
● FET equivalent noise resistor ( 68 Ω )

- “white” noise spectrum
● strip lines:  

- negligible noise at low frequencies
- resonating behaviour above 100 MHz
  (lowest Eigenfrequency of the system)

Beetle frequency response spectrum:
● peaks around 10 MHz

- in rising part of noise spectrum
- sensitive to details of simulation
- e.g. significant systematic effect from 
  effective Beetle input impedance 

varying strip inductivity

varying input impedance
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Serial Noise
Convolution of squared noise spectrum and Beetle response spectrum

● for 3 x CMS + cable:           3800 e- 
● discrete capacitance of 57 pF: 3300 e- 

~ 15 % increase due to
strip resistances}

Measured noise as a function of load capacitance:

but: significant uncertainty on this result !!!!

● Test beam with long ladders:
ENC = 770 e- + 47.9 e- / pF

● Test bench measurements with
discrete load capacitances:
ENC = 580 e- + 48.8 e- / pF

● good agreement of slopes, no indication
for any effect from strip resistances 

(Vfs = 400 mV)
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CCE Loss in Between Strips
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sum of charges on 4 strips
3 x CMS-OB2, Vbias = 450 V

Sum of the signals on four strips closest to particle impact point
● to avoid any possible bias due to clustering algorithms
● example: module of three CMS-OB2 sensors, Vbias = 450 V  (Vfd ≈ 250 V)
● similar results for other testmodules / strip geometries
● relative CCE loss depends ~ linearly on the ratio (pitch-width) / thickness


