Status and Performance of the CDF Run II Silicon Detector

Tuula Mäki

University of Helsinki and Helsinki Institute of Physics

on behalf of

CDF Silicon Operations Group CDF Collaboration

The Sixth International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors September 11-15, 2006

Outline

- Introduction
- Commissioning
- Operational Experience
- Status of Detector
- Detector Longevity
- Summary

Tevatron

Initial luminosity 2*10³²cm⁻²s⁻¹
36*36 bunches, bunch spacing 396 ns
Delivered luminosity 1.9 fb⁻¹ (1.5 fb⁻¹ on tape)

CDF Silicon Detector

Consist of three sub-detectors

★ SVX 11 ★ ISL ★ L00

Detector is inaccessible until the end of Tevatron Run II

Run II Silicon

 *7-8 silicon layers
 *722,432 channels/ 704 ladders/ 5644 chips
 *largest operating silicon detector in HEP

Tuula Mäki

STD6, September 11th-15th 2006

Importance for Physics

Silicon tracking needed for

- Precision tracking
- Identification of primary and secondary vertices

CDF silicon has had significant contribution to, for example

- Recent B_s mixing result
- Top quark mass and properties

Example: dileptonic *tt* event
Two jets b-tagged by finding secondary vertices

SVX II

SVX II is the core of CDF Silicon Detector

Five double-sided layers

★layers 0,1,3 with axial & 90° rZ strips
★layers 2,4 with axial & 1.2° stereo strips

- Strip pitch from 60 μ m to 140 μ m
- Highly symmetric in φ and z
- Used in Silicon Vertex Trigger (SVT) at Level 2

★tight alignment constraints, fast parallel readout

Basic building block called ladder
 microstrip sensors SVX3D readout chips

Tuula Mäki

Note wedge symmetry

ISL and L00

Intermediate Silicon Layers (ISL)

- One double-sided central layer
 k tracks from drift chamber to SVX II
- Two double-sided forward layers
 ★ silicon tracking in forward regions up to pseudorapidities of η=2
- Strip pitch 112 μ m

lightweight signal & bias cables (Kapton)

Layer 00 (L00)

- Single-sided layer mounted on beampipe
 - ★precision position measurement before scattering in inactive material
- Strip pitch 25 μ m

Infrastructure – A Complex System

DAQ

★VME based★135 VME boards in 17 crates

CAEN power supplies

high voltage to bias silicon sensors
low voltage to power electronics
114 modules in 16 crates

Interconnectors

216 port and junction cards

Cooling and interlock system

★ SVX II cooled to -10 °C ★ ISL cooled to +6 °C

Cables

☆~1000 cables in total

STD6, September 11th-15th 2006

Commissioning

- Lengthy commissioning period of 1.5 years:
- Large and complex system
- Several initial problems
 * blocked ISL cooling lines
 * wirebond resonance problems
 * failed power supplies on L00
 * noise pickup on L00
- All of the problems have been addressed

 For more information, see
 *B.Brau, Operational Experience from the CDF Run 2 Silicon Tracker, proceedings for STD5

Wirebond Resonances

Observed loss of data and power to Z sides of ladders

★found to correlate with high trigger rates

Failure due to wirebond

resonances

 wires orthogonal to magnetic field
 wires feel Lorentz force during readout

★if frequency is right, wires resonate and they can break

VME board introduced to prevent

resonances

 ★ board measures ∆(∆t) between readout commands
 ★ if ∆(∆t) smaller than programmed value, counter incremented
 ★ if counter reaches threshold, DAQ stopped

No new failures after installation

Operating CDF Silicon Detector

- Accessing silicon sensors is impossible
 maintaining high level of performance is a significant challenge
- Power supplies and part of DAQ boards are in collision hall
- Daily operations require 5 FTEs from post-docs and graduate students
 *keep detector running
 *recover from incidents
- 2 people always on-call

Beam Incidents

I TeV beam has a lot of energy \star can cut through solid steel

Quenches

- Unstable beam can quench Tevatron's superconducting magnets **Kicker prefire**
- 1 (out of 5) abort-kicker tube fires at random time
 - *1 abort-kicker insufficient to kick beam into abort dump Collimator

Beam Incidents and Silicon

Silicon detector very close to 1 TeV beam

- Sensitive to abnormal and unstable beam conditions
- Large amount of charge deposit in the chips may cause loss of communication to the analog part of the SVX chips
 ***often problems disappear within days
 ***but previous problems can reappear or become worse
 ***a few of ladders shown unrecoverable problems

How to mitigate effects of incidents?

- Monitor beam conditions
- Beam collimator in front of CDF
- BLM abort system
- Novel diamond system being commissioned
- We work closely with Accelerator Division to improve situation

Status of Detector

92% of ladders powered
85% of ladders return good data good = error rate <1%

Detector	Total	Powered	Good
L00 SVX II	48 360	98% 92%	96% 84%
ISL	148	91%	82%

 Silicon Vertex Trigger
 requires good data from 4 out of 5 ladders/wedge of SVX II
 coverage 96%
 important not to lose more ladders L00 + SVX + ISL Ladders

Longevity of Silicon

CDF silicon detectors must perform reliably and efficiently until the end of experiment in 2009 (5-8 fb⁻¹)

- Silicon sensors main concern:

 - 2. Signal-to-noise (S/N) ratio good enough for SVT and b-tagging
 ** irradiation increases bias current and capacitive noise * signal decreases, the reason not understood*

Bias Voltage

Bias voltage can be measured with two methods:

Method 1: Signal vs. Bias

- Requires beam
- Vary bias voltage and watch the collected charge
- Determine V_{dep} as 95% amplitude of sigmoid fit

Method 2: Noise vs. Bias

- Beam not required
- Vary bias voltage and watch the average noise
- Assume the detector is fully depleted when noise is minimum
- Does not work for L00 (single-sided sensors)

Two methods give similar results

Depletion Voltage

Innermost layers experience largest amount of radiation

- L00: radiation hard, single-sided
- SVX L0: first layer not to be fully depleted due to radiation damage
- We seem to follow optimistic prediction

Ability to deplete silicon sensors not a limiting factor

350 **Central Prediction** + $\int \sigma$ Prediction 300 $-I \sigma$ Prediction Depletion Voltage (V) 250 Data 200 max. depletion voltage 150 Prediction 100 Data 5(N 20004000 6000 8000 0 Integrated Luminosity (pb⁻¹)

Innermost layer of SVX

Prediction: S. Worm, "Lifetime of the CDF Run II Silicon," VERTEX 2003

Signal-to-Noise Ratio

Signal-to-noise ratio studied in dimuon J/ ψ events:

- Signal: charge of a cluster
- Noise: average strip noise in a cluster
- Charge path length corrected

SVX II after 1.7 fb⁻¹ delivered luminosity

- $R\Phi$ S/N = 9.5:1 12:1
- Z = S/N = 9.5:1 12:1

Signal-to-Noise ratio

 Empirical model for S/N predictions
 **linear decrease in signal *sqrt increase in noise*

Benchmarks for S/N
 SVT predicted to start losing efficiency at S/N<8
 Run I: top quark discovery with S/N = 3

There is no evidence S/N won't be good enough until the end of Run II

How to make silicon last longer

We have taken several actions to make silicon last longer:

- ◆ SVX cooling temperature reduced from -6 °C to -10 °C
 ★ reduction of noise, mitigation of reverse annealing
- Silicon detector volume thermally isolated
 minimize thermal cycles of silicon detectors volume flushed with nitrogen: avoid condensation

We monitor the status of detector, and prevent accidents:

- Measure depletion voltage in bias scans and measure S/N
- Monitor beam conditions and take fast action if there is high risk for beam incidents

Summary

- The CDF silicon detector is a large and complex system that continues to operate well
 ** success comes at the cost of considerable effort*
- The detector will be operating for 3 more years
 **significant contribution to most of CDF physics results*
- There is no evidence the CDF silicon detector will not survive until the end of Run II
- We are working hard to ensure our detector performs at a consistently high level throughout Run II