Status of the Belle Silicon Vertex Detector and its Development for Operation at a Super B-Factory

Samo Stanič

University of Nova Gorica, Slovenia

On behalf of the Belle SVD group

B mesons: ct = 460 μ m Boost: $\beta\gamma$ = 0.42 Decay distance ~ 200 μ m

Requires vertex resolution \sim 100 μ m

S. Stanič, STD6, Sep. 11-15, 2006

The Belle Detector

Belle is operating at a record luminosity collider - KEKB

KEKB → SuperKEKB Luminosity increase

Detector impact of the KEKB upgrade

- Occupancy \rightarrow x 20 x 50 with background increase
- Better radiation hardness/beam radiation protection of the IR
- Many analyses aren't statistically limited \rightarrow better vertexing desired

- We have replaced several SVDs to provide stable operation and improve vertexing performance
- Gradual improvement of the interaction region and switch to radiation hard readout electronics
- SVD upgrade trend will continue to match the accelerator performance

SVD generations

SVD1 (June 1999 ~June 2003) SVD2 (October 2003 \sim) SuperB SVD

- **3 layer cylinder** ٠
- 23-139° $\leftarrow \theta$ acceptance ٠
- 2.0cm ← Beam pipe radius → 1.5cm ٠
- 2 kGy 🔶 Rad. hardness •
- 4 layer cylinder
- **17-150°**
- 200 kGy

Luminosity ×100 **Background** ×30 **@SuperKEKB**

SVD2 Sensors and Front-End Readout

Hamamatsu DSSD (AC coupled)

DSSD	L1~L3		L4	
	P(z)	Ν(φ)	P(z)	Ν(φ)
size(mm)	79.2x28.4		76.4x34.9	
Strip pitch	75µm	50µm	73µm	65µm
# of strip	1024	512	1024	512
Strip width	50µm	10µm	55µm	12µm

Readout: VA1TA chip VA1 analog out

•VA1: analog readout

- •Shaping time 300ns ~ 1µs (now 800ns)
- •128 channel serial read-out with 5MHz clock

•TA: SVD L1 trigger

•Experimental, disabled

SVD2 Mechanical Structure

Ladders:

- Up to 3 sensors connected to one hybrid
- z side connected via flex cables, low capacitance, ENC 500-1000

Layers:

- 4 layers, Rinner=20mm
- . 54 ladders used

Half-ladder

SVD2 DAQ system overview

S. Stanič, STD6, Sep. 11-15, 2006

FADC \Rightarrow **Online PC** farm

FADC 9U VME × 36 Xeon 2.4GHz 2CPU ×12 LVDS cable $5m \times 36$ •10MHz transfer clock for 32 bit line •data trans. rate 40Mb/s Noise calculation Offset subtraction PC Zero suppression FADC = >reduced to ~5% $\overline{\times 12}$

3FADCs are connected to 1 PC with LVDS-PCI board

SVD2 – Radiation Hardness

- VA1TA 0.35 mm radiation hard upto ~ 200 kGy
- average accumulated dose in first layer ~ 3.5 kGy
- maximum accumulated dose in first layer ~ 6kGy

⇒ Gain is stable

SVD2 performance overview

• SVD2 has been working stably:

- Smooth operation
- ~ 10% occupancy in Layer 1
- No gain degradation due to radiation
- Backup ladders for layers 1 and 2 are available

To keep it alive and functional under severer beam background conditions, the following changes have been made / are planned:

• DAQ

- PCs will be replaced with new, faster ones (planned, in preparation)

Rearrange cables

- Signals from all layers are spread not to localize high occupancy to any particular DAQ PC
- Localize inner layer channels and adopt special (very short) shaping time for this layer only (planned)
- Change VA1TA settings to have shorter shaping time
 - Reinforced power cable
 - Disabled TA part
- Software
 - More robust clustering and tracking
- L0 upgrade (summer 2005)

However, KEKB luminosity keeps increasing!

- Beam induced backgrounds keep increasing also
 - SVD2 performance becomes deteriorated
 - Trigger rate and data size increase

- Crab cavity installation early 2007: ×2-3 luminosity increase
 - imes 2-3 times higher background
 - Occupancy in Layer 2 will reach ~ 10%

S. Stanič, STD6, Sep. 11-15, 2006

Belle Collaboration

Higher occupancy: Intrinsic resolution degradation

Higher occupancy: Hit Efficiency

S. Stanič, STD6, Sep. 11-15, 2006

Intermediate upgrade: SVD3

SVD3 requirements

- Lower occupancy without degrading the performance for high luminosity KEKB operation
- As small modification of current (SVD2) design as possible
 - Use same geometry DSSDs (occupancy can be sufficiently reduced with faster shaping)

Upgrade Strategy

Replace SVD layers 1&2 only

• design of new DSSD sensors is similar to current one:

- Same # of readout channels
- Small modifications for operation in increased radiation environment
- Use of fast shaping & pipeline in a front-end chip
- Update of all DAQ systems

Readout for the SVD3

- APV25 ASIC was chosen

 originally developed for CMS ST
 radiation hard
 works with 40MHz clock, synchronized with LHC bunch crossing
- Different opeation at SuperB:

 -2 ns (508MHz) bunch crossing
 -different chip control, sensor
 connection and analog signal transfer
 -negligible deadtime at 30kHz trigger

APV25 evaluation for SuperB:

APV25 ASIC

- Test bench developed by HEPHY (Vienna)
- Readout of a Belle DSSD:
 - -with external and internal trigger
 - -test pulse. signals from radiation source, IR pulse laser and pions from a test beam line

Hit timing reconstruction with APV25

- 2 ns bunch crossing
 - APV25 built-in de-convolution filter can not be used at this interaction rate
- Hit time reconstruction (proposed by Vienna)
 - Read out 3, 6 ... slices in the pipeline for one trigger
 - calculate accurate pulse height by reconstructing pulse shape
 - Extract the hit timing information from the wave form

- Proven in beam tests: Time resolution ~ 2 ns
- Reconstruction in the FPGA chips in FADC board

TDC vs. fitted peak time

run019, 51 μ m

Residual distribution (including trigger jitter)

p-side: RMS=2.16ns

n-side: RMS=1.56ns (narrower clusters)

M.Pernicka, M.Friedl, C.Irmler (HEPHY Vienna), Y.Nakahama (Tokyo)

Analog signal transfer

Readout chain components successfully tested with a test bench:

- 1. 56cm long capton cable between DSSD and APV25
- 2. 2m long flat cable between APV25 and the repeater system
- 3. AC coupling repeater (reduces the effect of pin holes in DSSD)
- 4. 30m CAT7 cable for analog signal transfer instead of optical fiber (compensation of slow response in the cable is necessary)

SVD3 Configuration

- New layers 1 & 2 with faster readout electronics (APV25). Larger chip size:
 - Increase of the hybrid size
 - Modification of the ladder shape

- APV25 readout will run in parallel with SVD2 system (VA1TA) for layer 3 & 4
- whether to fit the new L1 and L2 ladders into the existing endring (w. spacers) or to make a new endring is still under discussion

Summary and prospects

Since 2003 Belle has a 4 layer SVD (SVD2), with

- radiation hard electronics (up to 200kGy) with trigger capability
- 1.5cm radius beampipe with good protection against beam backgrounds
- $17^{\circ} < \theta < 150^{\circ}$ geometrical acceptance
- Performance in good agreement with expectations

SVD2 contributes significantly to the large number of very interesting measurements of rare processes in B meson decays, however, performance degradation due to higher occupancy is a serious problem

Short term upgrade plan: SVD3 for upgraded KEKB

• Replacement of inner layers (1 & 2) with new ones, using the same sensor with faster readout chip (APV25), scheduled for 2007

Long term upgrade plans: SVD/PVD for a SuperB factory

some type of monolithic pixel detectors in inner layers, i.e.

- monolithic active pixel sensors (S. Stanič, poster)
- monolithic SOI pixel detectors (Y. Arai talk, 12.9.)
- Outer layers:
 - DSSD with APV25 will perform well at SuperKEKB design luminosity

