The CMS pixel detector

Daniela Bortoletto

Purdue University

On behalf of the CMS pixel collaboration

The CMS pixel detector

 The (hybrid) Pixel detector is the core of the CMS tracking system

3 barrel layers (BPix)

- r=4.3, 7.2 and 11 cm
- 672 full modules and 96 half modules
- 11528 ROCS, 48 Mpixels
- Total area 0.78 m²

•4 disks (FPix)

- Z=±34.5 and ±46.5 cm
 (~ 6 cm above beam line)
- 96 blades with 672 modules
- 4320 ROCS, 18 Mpixels
- Total area 0.28 m²
- Operation at~ -10 °C in 4 T B field
- 3 space points up to $|\eta| < 2.5$ (9.3⁰)

Dose @ IL: 3×10¹⁴ n_{eq}/cm²/year at L=10³⁴ cm⁻² sec⁻¹

~20 m

_1 m

Requirements

Vertexing

- 100 × 150 µm² pixel size ⇒ excellent spatial resolution ≈10-20 µm
- Charge sharing promoted by 4T B field and 20^o tilt in FPiX
- Track reconstruction
 - High detection efficiency: >95% at end of lifetime
 - Low occupancy and ghost rate
- The "pixel triplets" are ideal seeds for tracking
 - pattern recognition, all 5 track parameters well constrained
 - can be used as tracks in High
 Level Trigger (b and τ)

- Radiation hardness
 - Up to 100 Mrad
 - Up to 6×10¹⁴ cm⁻²
- LHC Rate requirements
 - 20 MHz/cm² (at R=4.4 cm)
 - 40 MHz readout speed to assign each hit to the proper bunch crossing
 - Data storage during trigger latency (3.2 µs)

FE Readout chip

- 0.25µm IBM CMOS rad-hard technology
 4160 Pixels in 52 columns x 80 rows
- Each readout cell contains:
 - Charge amplifier and Shaper
 - Programmable discriminator
 - Storage capacitor
 - Signal injection capability
- Power consumption ~120mW =29 μ W/pix.
- Double column architecture
- Periphery~ 900 μm due to 12 time stamps and 32 data buffers
 - Programmable voltage regulators
 - modified I²C running at 40MHz

• 28 DACs for ROC setting

- Noise: $\sim 100e^{-} \Rightarrow \sim 120e^{-}$ after irradiation • Protection to reduce Single Event Upset
- Protection to reduce Single Event Upset (worst case <3×10⁻²Hz, 0.1% pixels changed threshold/ 8 h)

ROC architecture

• Zero suppression in pixel cell

- Pixels above threshold are transferred to the periphery⇒ timestamp + address (analog)
- Kept on ROC during L1 latency
- Double column stops data acquisition when confirmed L1 trigger (dead time)
- Double column resets after readout ⇒losing history
- Serial readout: Controlled through readout token passing from chip to chip and double column to double column.
- Total data losses @100 khz and 10³⁴cm⁻²s⁻¹ ~3.8% @4.4 cm

ROC performance

Sensors

- n-on-n sensors for partially depleted operation
- Multi guard ring to allow "high voltage operation"

•BPIX

- Isolation with moderated p-spray
- biasing grid and punch through structures

• FPiX

 Isolation with open p-stop which also provides a resistive bias network

⁶th Iroshima Symposium Sept 11-15, 2006

Sensors status

FPIX Sensor SINTEF

- Sensor production completed
- Need 96 sets (ensemble of good sensors in different geometries)
- We have 144 sets in hand

Both can operate beyond $\phi = 6 \times 10^{14} N_{eq}/cm^2$ assumed in TDR

Test beam Performance

Bump Bonding BPIX

- In House Indium bump deposition
- UBM at PSI or at CIS

- Two flip chip machines
 - •Placement of chip to sensor within 1-2 μ m
 - Probe card for ROC testing
 - •15 min preparation+ 50 min/ 16 ROC module
 - Typical through-put: 6 modules/day (1 operator with bare module testing)
- Production plan 4 modules/day (8 modules/day possible)
- Silicon splinter problem << 1 in 25 modules are affected
- Bumping defects investigated mainly with electrical tests
- Reworking in place at PSI

Bump Bonding FPIX

Bpix Modules

- Power and Signal cable (Kapton with 21 traces)
- 3 layer HDI (6 μm Cu, 10 μm Kapton)
 - Top and middle layer for routing the signal; third layer for power distribution
 - Hosts capacitors and Token Bit Manager chip
- Sensors bump bonded to Front End readout chip
- Si₃N₄ support strips (250 μm thick)
 - Excellent CTE match to SI, connected to cooling

Modules Readout Scheme

FPix Modules

Modules production

Production started in June

- At 6 Module/ day → 34 production weeks (incl. 30% reserve & spares)
- At 6 plaquette / day → 27 production weeks (incl. 30% reserve & spares)

BPix testing and qualification

- Rapid thermal cycling box for 4 pixel barrel module
 full test @ -10°C (1.5h)
 10 cycles [-10°C,+20°C] (3.5h)
 full test @ -10°C (1.5h)
 full test @ +20°C (1.5h)
 Testing of 4 modules/8 hours →
- Testing of 4 modules/6
 8 Modules / day !

21% grade C, should get better

FPiX testing and qualification

FPix mechanical support

Service tubes and Installation

- Bpix and Fpix will be installed when the beam pipe is already in place using rail systems.
- An installation test has taken place at CERN in June 2006 with FPiX mockup cylinder

BPix mechanical support

Detector Support Structure Design

BPiX Mechanics & integration

Pixel Readout

Electronic integration

Ongoing both at PSI and Fermilab

• BPix 12 module test

- 1 pFEC channel ⇒ 12 modules
 2 x per slot: layer 1+2, layer 3
- verify all (pre-)production components/ interfaces
- control signal fan-out using LCDS chips
- DOH mother board
 - houses 2 x DOH + PLL + Delay25 + Gatekeeper
 - •provides clock/trigger/fast I2C to L1+2 and L3 endring prints
- AOH mother board
- Supply board

D

 CCU board for slow control (still under design)

Half disk test at Fermilab

o познина зутирозиит зерt 11-15, 2006

2007 pilot run

•FPiX

- 8 panels (already built) ⇒ 2 blades each in two half disks = 4% solid angle
- Instrument sectors F1 and F2 in the –Z direction.

•BPix:

- Half shell partially equipped with modules in the same region
- Learning tool for the "real" run:
 - Assembling the whole detector
 - Integrating FPIX and BPIX
 - Debugging tracking with real data

Conclusion

A lot of progress has been made but much work still to be done
Working on crucial details:

- End flange
- Cooling distribution
- Cables

 Installation conceptual design on hand

The LHC and the CMS clocks are clicking

Backup slides

Prototype half disk

¹/₂-Disk, Cooling Channe

Power supply system

Triplet efficiency

Pixel triplet efficiency

- Blue line for tracks with three pixel hits
- Red line for all tracks

 difference due to geometrical inefficiencies but excluding readout inefficiencies

Primary Vertex efficiency

Lorentz angle

FPiX Schedule

Data Losses: Simulation

D. Bortoletto

FPix readout

Data Losses measured

High rate test at PSI

- 300 MeV/c π+
- Variable intensity up to 100 MHz/cm²
- 50 MHz beam structure
- CMS like conditions (LT1 = 3.2µsec, 100 KHz)
- Measured inefficiency with tracks
- Inefficiency <3 % at 80 MHz/cm²
- Agreement with simulation

Transportation & Installation of BPIX

Slow controls and Optohybrids

Installation of BPIX and FPiX

Readout Components

- <u>px-FED</u> Front End Driver, FED decodes pixel address into binary numbers for DAQ
- 9U VME readout module (HEPHY Vienna)
 - V3 delivered
 - V4 being built now
- **<u>px-AOH</u>** 6 lasers-AOH with pixel specific Analog Level Translator-Chip (PSI)
 - PCB designed & fabricated (HEPHY)
- ALT chip fabricated, tested & mounted (PSI)
- Final Laser mounting ongoing, testing (HEPHY)
- <u>px-FEC</u> standard FEC hardware (CERN) with pixel specific firmware (Rutgers U.)
 - normal CERN production ongoing
- px-Firmware done
- <u>px-DOH</u> standard DOH (CERN) with pixel specific modified RX40 chip (CERN//PSI)
- CCU, PLL, Delay25 standard components delivered by CERN

FPiX Survey

