

The ATLAS Pixel Detector - Overview and Present Status -

Reiner Klingenberg

University of Dortmund, Germany

on behalf of the ATLAS Pixel Collaboration

- Basic Design Ideas: Radiation Tolerance
- Modules Assembly and Tests
- Present Work: Detector Integration and Tests

STD6 6th International Hiroshima Symposium on the Development and Application of Semiconductor Tracking Detectors

The ATLAS Experiment at the LHC

$$\emptyset$$
 = 25
 L_{toroid} = 26 m
 $L_{EC-span}$ = 46 m
weight = 7000 t

Calorim etry:

$$\frac{\sigma_{\mathbb{F}}}{E}(e, \gamma) = \frac{10\%}{\sqrt{E/\text{GeV}}} \oplus 0.3\%$$

$$\sigma_{\theta} = \frac{60 \, \text{mrad}}{\sqrt{E/\text{GeV}}}$$

$$\sigma_t = \frac{4 \text{ ns}}{E / \text{GeV}}$$

$$\frac{\varpi_{\overline{E}}}{\overline{E}}(\pi^{\pm}) = \frac{50\%}{\sqrt{E/GeV}} \oplus 3\%$$

$$\frac{\sigma_{\mathbb{F}}}{E}(\text{jet}) = \frac{50\%}{\sqrt{E/\text{GeV}}} \oplus 2\%$$

Tracking:

$$\frac{\sigma}{p_T}$$
(Inner Det) $\approx (0.03p_T / \text{GeV} + 1.2)\%$

$$\frac{\sigma}{p_T}$$
(IDet+ μ) $\approx (0.009 p_T/\text{GeV} + 1.4)\%$

The ATLAS Pixel Detector

Issue: Radiation Tolerance @ 10³⁴cm⁻²s⁻¹

Radiation map of the inner detector:

Sensor Strategies (I)

• Usage of DOFZ: diffusion oxygenated float zone silicon

(RD48/ROSE)

Sensor Strategies (I)

Usage of DOFZ: diffusion oxygenated float zone silicon

(RD48/ROSE)

Operation conditions avoid reverse annealing

 $N_A = g_a \Phi_{eq}$

gc Deq

annealing time at 60°C [min]

Δ N_{eff} [10¹¹cm⁻³]

short time (beneficial) annealing + constant damage + reverse annealing (Hamburg model)

U Dortmund

Sensor Strategies (II)

design of bulk

Sensor Strategies (II)

Sensor Strategies (II)

Sensor Layout

Sensor Layout

- 46000 pixel cells à 50x400(600) µm²

 Production and full testing of 1000 wafers (2500 tiles) finished

Read-out Electronics

- 1 Sensor
- 16 front end chips (FE)
- 1 module controller chip (MCC)

- Readout Drivers (ROD)
- Readout Buffers (ROB)
- Timing Control (TIM)
- Slow Control, Supplies

One of 80 Million FE Cells

The ATLAS Pixel Module

= sensor + FE electronics + loaded flex hybrid

Module production & tests

1744 pixel modules are needed for the full pixel detector

Module production & tests

1744 pixel modules are needed for the full pixel detector

 Quality of modules has been verified

Example of module tests

Tuning of FE cell thresholds

Example of module tests

Tuning of FE cell thresholds

Example of module tests

 Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)

- Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)
 - efficiency (TDR > 97%)
 - 99.9 % before irradiation
 - 97.8 % after irradiation (500V bias, fully depleted)

ATLAS Pixel test beam setup

Test beam result of hadron irradiated pixel modules @ 10¹⁵ n_{eq} cm⁻²

- there is homogenous charge collection
- small deviation near the bias dot (15% unirradiated, 30% after end of lifetime dosis)
- values stay well above the threshold

- Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)
 - efficiency (TDR > 97%)
 - 99.9 % before irradiation
 - 97.8 % after irradiation (500V bias, fully depleted)
 - charge collection after irradiation
 - 87 % (± 14 %) if controlled annealing is performed during LHC breaks

- Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)
 - efficiency (TDR > 97%)
 - 99.9 % before irradiation
 - 97.8 % after irradiation (500V bias, fully depleted)
 - charge collection after irradiation
 - 87 % (± 14 %) if controlled annealing is performed during LHC breaks collected charge vs. radiation

- Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)
 - efficiency (TDR > 97%)
 - 99.9 % before irradiation
 - 97.8 % after irradiation (500V bias, fully depleted)
 - charge collection after irradiation
 - 87 % (± 14 %) if controlled annealing is performed during LHC breaks
 - spatial resolutions (TDR < 13 μm)
 - 7.5 µm before irradiation (at incidence angle 10°)
 - 9.7 μm after irradiation (at incidence angle 15°)

- Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)
 - efficiency (TDR > 97%)
 - 99.9 % before irradiation
 - 97.8 % after irradiation (500V bias, fully depleted)
 - charge collection after irradiation
 - 87 % (± 14 %) if controlled annealing is performed during LHC breaks
 - spatial resolutions (TDR < 13 μm)
 - 7.5 µm before irradiation (at incidence angle 10°)
 - 9.7 μm after irradiation (at incidence angle 15°)

 these studies are being verified under combined test beam conditions

- a sector of the ATLAS barrel part has been used for detector performance studies
- this emulates transversely (high p_⊥) emitted particles passing through the barrel

ATLAS Combined Test Beam

- Production modules have been tested after irradiation 10¹⁵ n_{eq} cm⁻² (NIEL) and 500 kGy (ionisation)
 - efficiency (TDR > 97%)
 - 99.9 % before irradiation
 - 97.8 % after irradiation (500V bias, fully depleted)
 - charge collection after irradiation
 - 87 % (± 14 %) if controlled annealing is performed during LHC breaks
 - spatial resolutions (TDR < 13 μm)
 - 7.5 µm before irradiation (at incidence angle 10°)
 - 9.7 µm after irradiation (at incidence angle 15°)
- efficiency of irradiated detectors under high intensity condisions, LHC-like particle flux
 - read-out electronics is verfied
 - efficiency is not affected by occupancy @ b-layer rate including safety margin (+ 23 %)
 - onset of inefficiencies is gradual, < 3 % @ b-layer rate + 65%

Present Work: Pixel Detector Assembly and Integration

Present Work: Pixel Detector Assembly and Integration

Pixel End Cap

assembly of disks in sectors = 1/8 of a disk 2x3 modules on C-C plates, sandwiching the cooling

Pixel End Cap

assembly of disks in sectors = 1/8 of a disk 2x3 modules on C-C plates, sandwiching the cooling

one of the end caps 3 disks à 2x24 modules

Pixel Barrel

Pixel Barrel

bi-stave w/ U-link

Pixel Barrel

bi-stave w/ U-link

U Dortmund

Pixel Integration as of September 2006

both half shells of layer 2 are completely filled

Reiner Klingenberg

U Dortmund

Pixel Integration as of September 2006

both half shells of layer 2 are completely filled

Reiner Klingenberg

U Dortmund

Dedicated System Tests

• to set-up the full chain of services and read-out for large parts of the detector

Dedicated System Tests

• to set-up the full chain of services and read-out for large parts of the detector

Dedicated System Tests

• to set-up the full chain of services and read-out for large parts of the detector

ATLAS Pixel: Conclusion and Outlook

- radiation tolerant design of sensor, FE and mechanics
- performance of detector has been verified under test beam conditions
- both half shells of layer 2 are completely filled layer 1 started to be assembled
- infrastructure for services & read-out is installed in surface building
- continue with system tests including staves & disks

ATLAS Pixel: Conclusion and Outlook

- radiation tolerant design of sensor, FE and mechanics
- performance of detector has been verified under test beam conditions
- both half shells of layer 2 are completely filled layer 1 started to be assembled
- infrastructure for services & read-out is installed in surface building
- continue with system tests including staves & disks
 - a three hit pixel detector is on its way for CERN-LHC

