Germanium-based detectors for gamma-ray imaging and spectroscopy

Mark Amman and Paul Luke

Lawrence Berkeley National Laboratory

The Sixth International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors

Amman 1 September 14, 2006

Gamma-ray tracking

Outline

- Ge detectors and Gamma-ray imaging
- Detector fabrication technologies
- Amorphous-semiconductor contacts
- Bipolar blocking and barrier heights
- 3-d position detection
- Fine electrode segmentation
- Issues: charge sharing, temperature cycling

Detector material: Why Ge?

- High Z
- Large commercially available crystals 10 cm diameter boules
- Large depletion lengths

> 2 cm

High efficiency

Near perfect charge collection

 $\mu \tau_{e}, \, \mu \tau_{h} > 10 \text{ cm}^{2}/\text{V} \rightarrow L > 10^{4} \text{ cm}$

• Favorable charge generation statistics

 $\begin{array}{l} \Delta E_{Statistics} = 2.35 \big(F\epsilon E_{\gamma} \big)^{1/2} \text{ ,} \\ F \equiv Ge \text{ Fano factor} = 0.08 \text{ eV} \\ \epsilon \equiv Ge \text{ e-h pair creation energy} = 2.97 \text{ eV} \end{array}$

Excellent energy resolution < 0.2%FWHM @ 1.3MeV

However, cooling to near LN temperatures required because of small band gap

Amman 3 September 14, 2006

Science

Need position as well as spectroscopic information

Amman 4 September 14, 2006

Implanted n+ contacts do not withstand high fields and are not reproducible

Metal surface barrier contacts are not rugged and are p-type

Segmented electrical contacts

Problems:

- Thick Li and post fabrication diffusion limit pitch to ~ 1 mm
- Interstrip surfaces lack passivation

Fine pitches possible on Bimplanted contact

Amorphous semiconductor contacts

Advantages:

Bipolar blocking contacts

.....

BERKELEY L

- Self passivating
- Simple fabrication process
- Thin contact dead layer
- Fine pitches achievable

W. Hansen and E. Haller, IEEE TNS 24, 61 (1977). P.N. Luke, et al., IEEE TNS 39, 590 (1992).

Years of World-Clas

Science

Barrier heights

n+ / p-type Ge / a-Ge device

Fit to $\Delta I = AT^2 e^{-\phi/kT}$

Contact	ϕ_{e} [eV]	ϕ_h [eV]	ϕ_{e} + ϕ_{h} [eV]	ρ [Ω-cm]
a-Ge (Ar)	0.36	0.34	0.70	~10 ⁶ -10 ⁸
a-Ge (Ar+17.5% H ₂)	0.29	0.39	0.68	~10 ¹¹
a-Si (Ar)	0.39	0.28	0.67	

Barrier heights depend on material and deposition parameters

Higher film resistivity of a-Ge (Ar+17.5% H_2) over that of a-Ge (Ar) typically desired to obtain high inter-electrode impedance

Contact	ϕ_{e} [eV]	ϕ_h [eV]	ϕ_{e} + ϕ_{h} [eV]	ρ [Ω-cm]
a-Ge (Ar)	0.36	0.34	0.70	~10 ⁶ -10 ⁸
a-Ge (Ar+17.5% H ₂)	0.29	0.39	0.68	~10 ¹¹
a-Si (Ar)	0.39	0.28	0.67	
Choose this combination to minimize leakage currer	a- (Ar,17	-Ge .5% H ₂)		J ≩ −V _b

September 14, 2006

Orthogonal-strip detectors produced for the Nuclear Compton Telescope (Steve Boggs at UC Berkeley Space Sciences Laboratory)

37 strips each side, 2 mm strip pitch, a-Ge (Ar, 17.5% H_2) contacts 6 detectors produced to date (12 ultimately required)

September 14, 2006

Strip detector produced for synchrotron x-ray applications (Daresbury Laboratory)

1024 strips, 50 μm strip pitch, 1 mm thick

Issue: Charge sharing

Expected response

Other solutions:

- Smaller gaps
- Field shaping electrodes: M. Amman and
- P.N. Luke, NIM A 452, 155 (2000).
- Etch away amorphous layer between electrodes: D. Protic and T. Krings, IEEE TNS 50, 998 (2003).

More work to be done ...

Improvements needed

- Temperature cycling stability
- Optimization of a-Ge/Ge/a-Si configuration
- Charge sharing reduction
- Side surface state control?