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Abstract 
This talk consists of personal observations on two 

classes of data acquisition (“DAQ”) systems for 
Silicon trackers in large experiments with which the 
author has been concerned over the last three or more 
years.  The first half is a classic “lessons learned” 
recital based on experience with the high-level debug 
and configuration of the DAQ system for the GLAST 
LAT detector.  The second half is concerned with a 
discussion of the promises and pitfalls of using modern 
(and future) generations of “system-on-a-chip” 
(“SOC”) or “platform” field-programmable gate arrays 
(“FPGAs”) in future large DAQ systems. 

The data acquisition system pipeline for the 864k 
channels of Si tracker in the GLAST LAT consists of 
five tiers of hardware buffers which ultimately feed 
into the main memory of the (two-active-node) level-3 
trigger processor farm.  The data formats and buffer 
volumes of these tiers are briefly described, as well as 
the flow control employed between successive tiers.  
Lessons learned regarding data formats, buffer 
volumes, and flow control/data discard policy are 
discussed. 

The continued development of platform FPGAs 
containing large amounts of configurable logic fabric, 
embedded PowerPC hard processor cores, digital 
signal processing components, large volumes of on-
chip buffer memory, and multi-gigabit serial I/O 
capability permits DAQ system designers to vastly 
increase the amount of data preprocessing that can be 
performed in parallel within the DAQ pipeline for 
detector systems in large experiments.  The capabilities 
of some currently available FPGA families are 
reviewed, along with the prospects for next-generation 
families of announced, but not yet available, platform 
FPGAs.  Some experience with an actual 
implementation is presented, and reconciliation 
between advertised and achievable specifications is 
attempted.  The prospects for applying these 
components to space-borne Si tracker detectors are 
briefly discussed. 

1 GLAST LESSONS LEARNED 
The Si tracking system (“TKR”) in the GLAST LAT 

consists of 16 modules, each of which is a tower of 36 
layers with 1,536 Si strips per layer.  The DAQ path 
for the TKR consists of one multi-chip module 
(“MCM”) per layer, one tower electronics module 

(“TEM”) per tower,  one global electronics box 
containing the event builder and other common logic 
(“GASU”), and three (2 active plus 1 cold spare) cPCI-
based event processor PowerPC computer crates 
(“EPUs”).  Event data flow from the MCMs through 
the TEMs to an event builder module (“EBM”) within 
the GASU, and thence to the active EPU crates via a 
LAT communication board (“LCB”) within each crate.  
The LCB performs direct memory access (“DMA”) 
transfers via the crate’s cPCI backplane to deposit 
incoming data directly into processor main memory.  
Events passing the onboard filter cuts in an EPU are 
returned via cPCI DMA transfer through the LCB to 
the EBM, which forwards them to the spacecraft solid 
state recorder for ultimate downlink. 

The MCM contains 24 TKR front-end chips 
(“GTFEs”) organized as a pair of serial daisy-chains, 
one running left-to-right and the other right-to-left.  
Each GTFE is an application-specific integrated circuit 
(“ASIC”) that provides the complete interface to 64 Si 
strips.  A separate TKR readout controller ASIC 
(“GTRC”) is located at each end of the GTFE daisy-
chains.  Although 12 of the GTFEs in an MCM are 
typically read out by the GTRC at each end, the 
readout path can be reconfigured for an asymmetric 
split between the two GTRCs to mitigate a GTFE 
failure on the daisy-chains.  Nine MCMs are mounted 
on each of the 4 sides of each tower, and the readout 
path for the 9 GTRCs on each end of the MCMs on 
one side are daisy-chained through separate TKR 
readout cables for each end of each side. 

The bit stream from each of a tower’s 8 TKR 
readout cables is routed to an individual TKR cable 
controller ASIC (“GTCC”) in the TEM.  Event data 
from the GTCC outputs pass via a 16-bit TEM-wide 
tri-state bus to a common readout controller FPGA, 
which builds and serializes a TEM’s contribution to a 
LAT event and forwards it to the EBM.  The TEM also 
contains 4 analogous tower calorimeter cable controller 
ASICs (“GCCCs”), plus another FPGA for trigger 
signal concentration and monitoring functions. 

The TEM event data are routed to a pair of EBM 
input FPGAs, with 8 TEMs serviced by each FPGA.  
These FPGAs deserialize the data and store them as 
32-bit words in a separate static memory (“SRAM”) 
array for each FPGA.  Upon command of the EBM 
output FPGA, an EBM input FPGA retrieves TEM 
event data from its SRAM and furnishes these data as a 
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byte stream to the output FPGA, which in turn 
forwards that byte stream to the LCB in a target EPU. 

The data path for incoming event data in the LCB 
begins with a deserializer in the LAT FPGA on this 
board.  This converts the incoming byte stream into 
32-bit words that are loaded into a discrete FIFO part.  
A separate PCI FPGA then removes blocks of words 
from this FIFO and writes these data into a circular 
buffer in main memory via a cPCI DMA transfer.  The 
event data FIFO marks the interface between the 
domains of the 20 MHz LAT clock and the 33 MHz 
cPCI clock.  Details of the paths via which data from 
events passing the onboard level-3 trigger filter cuts 
are returned from the EPU to the EBM and thence to 
the ground are beyond the scope of this talk. 

Data Formats & Buffer Sizes 
Each GTFE has 4 event buffers, where each buffer 

consists of the 64-bit mask of the presence/absence of 
a hit in each strip in an event.  Each GTRC has 2 event 
buffers, with each buffer containing up to 64 11-bit 
addresses (5 bits of GTFE number plus 6 bits of strip 
number) of those strips with hits in an event.  Each 
GTCC has a 128-entry FIFO where each 12-bit entry 
consists of the 11-bit strip address within a layer plus 
an end-of-layer bit.  Within the SRAM of an EBM 
input FPGA, each TEM owns an 8-kilobyte (“kB”) 
circular buffer region which serves as a data FIFO.  
The 12-bit data words from the GTCC FIFOs are 
packed into this FIFO at 3 nibbles per word.  Finally, 
the event data FIFO between the two FPGAs in the 
LCB holds up to 4 kilobytes of data, which is in the 
same 3-nibble/hit format for TKR hit strip addresses. 

Flow Control & Data Truncation 
TKR data flow upstream of the TEM relies on the 

TEM issuing commands to pull data from one buffer 
stage to the next, based on the state of a buffer model 
maintained within the TEM.  The TKR generates LAT 
dead time whenever the buffer model in any TEM 
indicates that all four of its GTFE buffers are full. 

Data flow begins when the TEM issues a command 
to all its GTRCs to pull data from a specified GTFE 
buffer and store the resulting hit strip addresses in a 
specified GTRC buffer.  Since there are two GTRC 
buffers, there can be up to two such commands 
outstanding from a TEM at any given time, with the 
second such command queued within the GTRC 
pending completion of the first outstanding command.  
A command of this type is issued whenever the source 
GTFE buffer is full and the destination GTRC buffer is 
empty.  If more than two of the GTFE buffers are full, 
the commands for the remaining buffers are queued in 

the TEM pending emptying of the target GTRC 
buffers.  Depending upon the configuration of the split 
in readout allocation between the GTRCs at the two 
ends of an MCM, a single GTRC may potentially find 
up to 1,536 hit strips per event.  The GTRC terminates 
its scan of the GTFEs’ buffers prior to processing all 
data from an event if the number of hit strip addresses 
already stored reaches a programmable limit set in 
each GTRC.  The maximum value of this limit 
corresponds to the 64 words of storage available within 
each GTRC buffer.  All remaining GTFE buffer data 
from the event are discarded by the GTRC once the 
limit is reached. 

The TEM also issues a command to all its GTRC 
daisy-chains to transmit the contents of a specified 
GTRC buffer to the GTCC FIFOs whenever the 
command to fill that GTRC buffer is already 
outstanding and none of the GTCC FIFOs are over a 
programmable “almost full” threshold.  If the process 
of filling the source GTRC buffer from a GTFE buffer 
has not completed when a GTRC receives this 
command, it defers the transmission pending 
completion of the buffer-filling operation.  At most one 
such command can be outstanding at any time, since 
the state of the FIFOs must be reevaluated after each 
such data transfer.  If there are outstanding requests to 
fill both GTRC buffers, the TEM queues the command 
to empty the second buffer to the GTCC FIFOs 
pending the completion of the first outstanding 
command.  Note that the GTRC does not notify the 
TEM when it finishes transferring the contents of a 
GTFE buffer to a GTRC buffer except in that it defers 
execution of a command to empty that GTRC buffer.  
Therefore, the TEM buffer model cannot mark either 
the GTFE buffer or the GTRC buffer as empty until 
event data have been transferred from the GTRC 
buffer to the GTCC FIFO.  If the event data volume in 
the buffers in the 9 daisy-chained GTRCs that feed into 
a single GTCC FIFO exceeds the available space 
within that FIFO, the excess data are discarded and an 
error is generated. 

TKR data flow downstream of the TEM utilizes a 
push model with backpressure from the EPUs’ main 
memory circular buffers to the LCBs, from the LCBs 
to the EBM, and from the EBM to the TEMs.  The 
EBM asserts backpressure to a TEM whenever the 
corresponding 8-kB circular buffer is at least half full.  
The TEM defers initiation of the transfer of an event 
contribution until this backpressure is absent, but does 
not respond to backpressure once a transfer is already 
in progress.  The EBM discards the excess in an event 
contribution over 4,080 bytes and generates an error.  
Since the maximum length of a “normal” TEM event 
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contribution is slightly more than 3 kB, data are only 
discarded in the rare combination of an event with an 
exceedingly large volume of data concatenated with an 
error contribution which approaches its maximum 
length.  Even in these cases it is the tail end of the error 
description that is truncated. 

The remaining stages of data flow utilize 
backpressure to suspend and resume a data transfer, 
and never discard data from the DAQ pipeline.  
However, the data transfer from the EBM to the LCB 
always occurs in units of 128-byte cells, and the 
backpressure request to suspend transmission is not 
honored by the EBM until the end of the current cell.  
In addition, there is hysteresis in the flow control in 
that the backpressure is not removed until the LCB 
event data FIFO falls below ¾ full.  The timing of the 
assertion of backpressure is also inexact, and is based 
on a worst-case estimate of the data volume within the 
FIFO, assuming that data were only written into the 
FIFO and not removed from the FIFO since it last 
became at least ¾ full. 

Lesson 1: Chose Proper Data Formats 
The Si strips in the LAT have a thickness that is 

approximately twice their width.  The TKR is required 
to maintain acceptance down to cos θ of 0.2, where θ is 
the usual polar angle from the zenith in spherical 
coordinates.  This implies that an individual track may 
intersect up to 10 strips in a single TKR layer.  Since 
the available phase space tends to zero near the zenith, 
the mean number of hits per track in a layer is 
significantly larger than unity.  Therefore, a data 
format that describes a cluster of adjacent hit strips 
rather than a single hit would have made more efficient 
use of available buffer space and data transfer 
bandwidth.  A rational format might have appended 4 
bits of cluster width (biased by 1) to the existing 11-bit 
format in the GTRC and 12-bit format downstream. 

Lesson 2: Provide Adequate Buffer Volume 
The volume of buffer space provided to hold zero-

suppressed TKR hit strip addresses at each stage in the 
DAQ pipeline has a potential impact on track-finding 
efficiency, and thus on detector acceptance.  Although 
the size of the LAT’s LCB FIFO was dictated by 
available components, the volume of SRAM buffer 
space dedicated to each TEM was chosen to provide 
space for two maximum-sized TEM event 
contributions, and was only 1/64 of the space available 
within the SRAM part. However, the size of the GTRC 
buffers and GTCC FIFOs were determined with the 
guidance of a Monte Carlo simulation of DAQ system 
performance with insufficient physics input.  Although 

the GTRC buffer size proved adequate (and would 
have been more efficiently utilized given the proper 
choice of data format), the 128-hit capacity of the 
GTCC FIFO appears to be insufficient to handle the 
worst-case requirements of 9 GTRC buffers each 
containing up to 64 hits, especially if data from 
previous events remain in the FIFO.  Although this 
FIFO occupies a significant fraction of the available 
die area in the space-worthy GTCC design, the die size 
for the GCCC was increased to contain a data FIFO 
twice the size of that in the GTCC.  A similar increase 
in GTCC FIFO size would have eliminated a major 
DAQ pipeline chokepoint. 

Lesson 3: Understand Truncation/Acceptance 
Si tracking systems have large numbers of channels 

with very low average occupancies.  Occasionally, 
either the underlying physics or electronic noise results 
in an event whose occupancy stresses the capacity of 
buffers for zero-suppressed data either locally or 
globally.  In extreme cases, it becomes necessary to 
truncate the event dataset and discard some zero-
suppressed data.  It is vitally important to have a 
clearly expressed, coherent policy for doing so, and to 
fully understand the effects of this policy on detector 
acceptance.  It is also necessary to mark each event if 
its data are truncated anywhere in the pipeline, and 
advisable to note the data volume discarded. 

It is highly tempting to take advantage of the low 
average occupancy to increase the pipeline’s duty 
cycle by removing backpressure when it becomes 
statistically unlikely, but not impossible, for the size of 
the next upstream event to exceed the volume of 
downstream buffer space currently available.  This 
temptation should be avoided unless the downstream 
buffer is not FIFO-like, i.e. it provides a fixed capacity 
for the next event regardless of the frequency of recent 
events or their average event size.  Failure to do so can 
engender a track-finding efficiency, and thus an 
acceptance, that is dependent not only upon detector 
and event geometries but also on the recent time 
history of the detector when an event occurs.  
Specifically, it is useful to limit truncation to the initial 
zero-suppression stage of the pipeline, and to perform 
that suppression into a fixed-length output buffer 
rather than a FIFO. 

Although initial hard-wired LAT design features 
that permitted the removal of backpressure when space 
for a maximum-length event fragment was not 
available in a downstream FIFO have been largely 
eliminated from the DAQ system, it remains possible 
to configure the combination of the maximum hits 
stored in each GTRC buffer and the “almost full” 
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threshold in the GTCC FIFOs so that the transport of 
event data from a GTRC daisy-chain to its GTCC may 
be initiated when there is potentially insufficient space 
in the FIFO to absorb those data.  Discussion of the 
appropriate settings for these configuration parameters 
is ongoing, and seems likely to persist until the LAT 
reaches orbit. 

2 PLATFORM FPGAS 
With the announcement of the Xilinx Virtex-II Pro 

family of FPGAs in 2002, and its subsequent 
availability in small quantities in 2003, it became 
possible to design DAQ architectures for Si tracking 
detectors with PowerPC processing systems embedded 
in the FPGAs within the DAQ pipeline.  The FPGAs in 
this family contain up to two PowerPC-405 processor 
cores as hard macros at specific locations on the die.  
Each processor runs at up to 300 MHz internal clock 
frequency and has a Harvard architecture with a 16 kB, 
two-way set associative level-1 cache for each of the 
data and instruction paths.  Each part also has up to 20 
multi-gigabit transceiver (“MGT”) hard macros 
operating at up to 3.125 gigabits/second in most parts, 
but up to 6.25 gigabits/second in a few parts.  The 
surrounding FPGA fabric provides up to 444 18-kilobit 
block memories, up to 444 18 x 18 multipliers, and up 
to 44,096 logic slices, where each slice contains two 4-
input lookup tables (“LUTs”), two register bits, and 
additional carry/multiplier/multiplexer support logic. 

The subsequent Virtex-4 FX sub-family increases 
the maximum number of available MGTs to 24, of 
block memories to 552, and of slices to 63,168, while 
increasing the maximum PowerPC clock frequency to 
450 MHz and increasing the performance of the FPGA 
fabric.  It replaces the multipliers by up to 192 flexible 
500 MHz multiply-adder/multiply-accumulator digital 
signal processing (“DSP”) slices with registered 48-bit 
adders.  Larger numbers of these slices are available in 
another sub-family optimized for DSP applications 
without embedded PowerPCs.  Larger members of the 
Virtex-4 FX sub-family are not yet widely available.  
The recently announced Virtex-5 family is based on 
the migration of the Si process from 90 to 65 
nanometer feature size.  Block memories grow from 18 
to 36 kB, LUTs change from 4 to 6 inputs, and DSP 
performance increases from 500 to 550 MHz while one 
multiplier input width grows from 18 to 25 bits.  
However, details of the FX sub-family with embedded 
hard processors have not yet been announced.  
Nevertheless, it is reasonable to assume that 
performance will continue to improve as feature size 
decreases. 

Initial Implementation Experience 
Experience at implementing platform FPGA systems 

was gained with an XC2VP50 Virtex-II Pro part with a 
single PowerPC running at 250 MHz, a single MGT at 
1.25 gigabits/second, and most internal busses clocked 
at 125 MHz.  A custom real-time operating system 
(“RTOS”) providing thread scheduling and inter-
thread communication services was developed, and 
resides wholly within a small portion of the 128 kB of 
on-chip program memory and 64 kB of on-chip data 
memory implemented in 96 of the fabric block 
memories.  In addition to these memories, the 
processor is equipped with two 8-megabyte banks of 
64-bit external zero bus turnaround static memory, 
again clocked at 125 MHz.  This system was 
developed to test advanced concepts for embedding 
processing in the DAQ component of control systems 
for pulsed accelerators with significant real-time 
requirements on pulse-to-pulse fast feedback, and is 
currently undergoing final application software 
development prior to future deployment at SLAC. 

The techniques developed in this Virtex-II Pro board 
are now being extended to an XC4VFX60 Virtex-4, 
with an initial increase of processor clock frequency to 
350 MHz and of bus clock frequency to 175 MHz.  
The external memory is replaced by reduced latency 
dynamic memory (“RLDRAM-II”) with separate pins 
for write and read data that can operate concurrently.  
A 64-bit bank of these parts thus provides up to 5.6 
gigabytes/second of combined write/read bandwidth at 
175 MHz clock frequency because of the double-data-
rate (“DDR”) protocol employed on the data lines.  
The configuration for accelerator controls is based on 
an asymmetric combination of two processors sharing 
a single bank of RLDRAM-II, with a custom RTOS 
operating on one processor for hard real-time functions 
and a commercial RTOS (e.g. VxWorks or RTEMS) 
with a full TCP/IP stack on the second processor for 
more feature-rich but less time-critical applications.  
Design variants with separate RLDRAM-II banks on 
each processor, and employing a commercial RTOS, 
are also under development for potential applications 
in the control module for the SLAC “Petacache” 
project and the camera control system of the Large 
Synoptic Survey Telescope (“LSST”).   Portions of 
these FPGA designs have been successfully placed and 
routed by the development tools, but prototype boards 
containing these parts are still under design. 

Pitfalls 
The principal limitations on the performance of the 

embedded processors in the Virtex-II Pro and Virtex-4 
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FX families stem from the following architectural 
features: 

1. The processor clock frequency must be an 
integral multiple, usually a factor of two, of the 
clock frequency of the processor local bus 
(“PLB”), which is the external connection to the 
level-1 caches. 

2. The design of the PLB, and particularly of its 
arbitration logic, leads to large amounts of 
combinatorial logic and long delays between 
pipeline registers, thus engendering low bus 
clock frequency when systems contain large 
numbers of potential bus masters. 

3. The lack of a level-2 cache and the small size of 
the level-1 cache lead to frequent data cache 
misses when executing DAQ applications in 
which the pipeline passes through the processor 
itself rather than around it. 

4. Although the PLB protocol itself permits 
pipelining of an arbitrary depth, the level-1 
cache interface to the PLB does not support 
having more than two read requests and one 
write request outstanding simultaneously.   This 
largely negates the advantages of having high-
performance code “touch” cache lines, thereby 
pre-fetching their contents into the cache, well 
in advance of the time that these contents are 
required by the underlying algorithm. 

5. Errata in the interface between the cache and 
the on-chip block memory controller prevent 
the use of any pipelining between the 
processor’s execution elements and caches 
when a mix of on-chip memory and PLB-
accessible memory is employed. 

6. The combination of the complexity of the PLB 
protocol and the necessity for deep pipelines in 
the read data paths for high-performance DDR 
memory technologies such as RLDRAM-II lead 
to large delays when a cache miss results in the 
need to fetch a cache line from external 
memory.  These delays can easily reach 20 bus 
clock ticks or 40 processor clock ticks, even 
when bus/memory arbitration is won after the 
minimum possible delay. 

The combination of these features leads to the 
observation that, at least for now, the most reasonable 
use of the embedded processor is to control a DAQ 
pipeline which actually passes through the on-chip 
DSP components, rather than through the processor 
itself.  A contemplated application employing 36 DSP 
slices to multiply a 144 x 144 matrix and a 144-
element vector every 4 microseconds to perform a 
channel-to-channel crosstalk correction on incoming 

pixels from the LSST camera in real-time might serve 
as an example of such an architecture. 

Space-Borne Application Prospects 
The use of digital logic in space-borne applications 

is always complicated by single-event upsets (“SEUs”) 
resulting from ionization deposited by cosmic rays.  
GLAST dealt with this problem by choosing an Actel 
FPGA family that was radiation hardened, employed 
triplication and voting within the feedback paths of 
each register bit in the FPGA fabric, and utilized one-
time programmable anti-fuses to establish both logic 
function and signal routing within the fabric.  In 
contrast, Virtex and related FPGA architectures 
employ static memory to specify fabric logic function 
via lookup table, as well as to configure routing 
resources.  This leads to a requirement that mitigation 
for SEUs must be developed for the configuration 
memory and on-chip processor data and program 
memories, as well as for data buffers and other 
functions implemented in block memory, in addition to 
the usual SEU protection via triplication and voting in 
register storage and ECC in external memories. 

Despite these obstacles, the large feature sets, high 
performance and density, and presence of both 
embedded processors and DSP slices makes the use of 
platform FPGAs in space-borne Si trackers 
exceedingly attractive.  As a result, SEU mitigation is 
being developed via a combination of manufacturing 
techniques (radiation hardening, block memories with 
hardware error correction), additional software steps in 
the development chain (automatic triplication and 
voting of fabric registers), and additional logic to 
periodically restore the contents of configuration 
memories to their initial state by rewriting their 
contents during the course of normal operation from an 
SEU-tolerant known good source (configuration 
memory “scrubbing”). 
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