

DATA ACQUISITION SYSTEM ISSUES FOR LARGE EXPERIMENTS

E. J. Siskind, NYCB Real-Time Computing, Inc., Lattingtown, NY 11560-1025, USA

Abstract
This talk consists of personal observations on two

classes of data acquisition (“DAQ”) systems for
Silicon trackers in large experiments with which the
author has been concerned over the last three or more
years. The first half is a classic “lessons learned”
recital based on experience with the high-level debug
and configuration of the DAQ system for the GLAST
LAT detector. The second half is concerned with a
discussion of the promises and pitfalls of using modern
(and future) generations of “system-on-a-chip”
(“SOC”) or “platform” field-programmable gate arrays
(“FPGAs”) in future large DAQ systems.

The data acquisition system pipeline for the 864k
channels of Si tracker in the GLAST LAT consists of
five tiers of hardware buffers which ultimately feed
into the main memory of the (two-active-node) level-3
trigger processor farm. The data formats and buffer
volumes of these tiers are briefly described, as well as
the flow control employed between successive tiers.
Lessons learned regarding data formats, buffer
volumes, and flow control/data discard policy are
discussed.

The continued development of platform FPGAs
containing large amounts of configurable logic fabric,
embedded PowerPC hard processor cores, digital
signal processing components, large volumes of on-
chip buffer memory, and multi-gigabit serial I/O
capability permits DAQ system designers to vastly
increase the amount of data preprocessing that can be
performed in parallel within the DAQ pipeline for
detector systems in large experiments. The capabilities
of some currently available FPGA families are
reviewed, along with the prospects for next-generation
families of announced, but not yet available, platform
FPGAs. Some experience with an actual
implementation is presented, and reconciliation
between advertised and achievable specifications is
attempted. The prospects for applying these
components to space-borne Si tracker detectors are
briefly discussed.

1 GLAST LESSONS LEARNED
The Si tracking system (“TKR”) in the GLAST LAT

consists of 16 modules, each of which is a tower of 36
layers with 1,536 Si strips per layer. The DAQ path
for the TKR consists of one multi-chip module
(“MCM”) per layer, one tower electronics module

(“TEM”) per tower, one global electronics box
containing the event builder and other common logic
(“GASU”), and three (2 active plus 1 cold spare) cPCI-
based event processor PowerPC computer crates
(“EPUs”). Event data flow from the MCMs through
the TEMs to an event builder module (“EBM”) within
the GASU, and thence to the active EPU crates via a
LAT communication board (“LCB”) within each crate.
The LCB performs direct memory access (“DMA”)
transfers via the crate’s cPCI backplane to deposit
incoming data directly into processor main memory.
Events passing the onboard filter cuts in an EPU are
returned via cPCI DMA transfer through the LCB to
the EBM, which forwards them to the spacecraft solid
state recorder for ultimate downlink.

The MCM contains 24 TKR front-end chips
(“GTFEs”) organized as a pair of serial daisy-chains,
one running left-to-right and the other right-to-left.
Each GTFE is an application-specific integrated circuit
(“ASIC”) that provides the complete interface to 64 Si
strips. A separate TKR readout controller ASIC
(“GTRC”) is located at each end of the GTFE daisy-
chains. Although 12 of the GTFEs in an MCM are
typically read out by the GTRC at each end, the
readout path can be reconfigured for an asymmetric
split between the two GTRCs to mitigate a GTFE
failure on the daisy-chains. Nine MCMs are mounted
on each of the 4 sides of each tower, and the readout
path for the 9 GTRCs on each end of the MCMs on
one side are daisy-chained through separate TKR
readout cables for each end of each side.

The bit stream from each of a tower’s 8 TKR
readout cables is routed to an individual TKR cable
controller ASIC (“GTCC”) in the TEM. Event data
from the GTCC outputs pass via a 16-bit TEM-wide
tri-state bus to a common readout controller FPGA,
which builds and serializes a TEM’s contribution to a
LAT event and forwards it to the EBM. The TEM also
contains 4 analogous tower calorimeter cable controller
ASICs (“GCCCs”), plus another FPGA for trigger
signal concentration and monitoring functions.

The TEM event data are routed to a pair of EBM
input FPGAs, with 8 TEMs serviced by each FPGA.
These FPGAs deserialize the data and store them as
32-bit words in a separate static memory (“SRAM”)
array for each FPGA. Upon command of the EBM
output FPGA, an EBM input FPGA retrieves TEM
event data from its SRAM and furnishes these data as a

 2

byte stream to the output FPGA, which in turn
forwards that byte stream to the LCB in a target EPU.

The data path for incoming event data in the LCB
begins with a deserializer in the LAT FPGA on this
board. This converts the incoming byte stream into
32-bit words that are loaded into a discrete FIFO part.
A separate PCI FPGA then removes blocks of words
from this FIFO and writes these data into a circular
buffer in main memory via a cPCI DMA transfer. The
event data FIFO marks the interface between the
domains of the 20 MHz LAT clock and the 33 MHz
cPCI clock. Details of the paths via which data from
events passing the onboard level-3 trigger filter cuts
are returned from the EPU to the EBM and thence to
the ground are beyond the scope of this talk.

Data Formats & Buffer Sizes
Each GTFE has 4 event buffers, where each buffer

consists of the 64-bit mask of the presence/absence of
a hit in each strip in an event. Each GTRC has 2 event
buffers, with each buffer containing up to 64 11-bit
addresses (5 bits of GTFE number plus 6 bits of strip
number) of those strips with hits in an event. Each
GTCC has a 128-entry FIFO where each 12-bit entry
consists of the 11-bit strip address within a layer plus
an end-of-layer bit. Within the SRAM of an EBM
input FPGA, each TEM owns an 8-kilobyte (“kB”)
circular buffer region which serves as a data FIFO.
The 12-bit data words from the GTCC FIFOs are
packed into this FIFO at 3 nibbles per word. Finally,
the event data FIFO between the two FPGAs in the
LCB holds up to 4 kilobytes of data, which is in the
same 3-nibble/hit format for TKR hit strip addresses.

Flow Control & Data Truncation
TKR data flow upstream of the TEM relies on the

TEM issuing commands to pull data from one buffer
stage to the next, based on the state of a buffer model
maintained within the TEM. The TKR generates LAT
dead time whenever the buffer model in any TEM
indicates that all four of its GTFE buffers are full.

Data flow begins when the TEM issues a command
to all its GTRCs to pull data from a specified GTFE
buffer and store the resulting hit strip addresses in a
specified GTRC buffer. Since there are two GTRC
buffers, there can be up to two such commands
outstanding from a TEM at any given time, with the
second such command queued within the GTRC
pending completion of the first outstanding command.
A command of this type is issued whenever the source
GTFE buffer is full and the destination GTRC buffer is
empty. If more than two of the GTFE buffers are full,
the commands for the remaining buffers are queued in

the TEM pending emptying of the target GTRC
buffers. Depending upon the configuration of the split
in readout allocation between the GTRCs at the two
ends of an MCM, a single GTRC may potentially find
up to 1,536 hit strips per event. The GTRC terminates
its scan of the GTFEs’ buffers prior to processing all
data from an event if the number of hit strip addresses
already stored reaches a programmable limit set in
each GTRC. The maximum value of this limit
corresponds to the 64 words of storage available within
each GTRC buffer. All remaining GTFE buffer data
from the event are discarded by the GTRC once the
limit is reached.

The TEM also issues a command to all its GTRC
daisy-chains to transmit the contents of a specified
GTRC buffer to the GTCC FIFOs whenever the
command to fill that GTRC buffer is already
outstanding and none of the GTCC FIFOs are over a
programmable “almost full” threshold. If the process
of filling the source GTRC buffer from a GTFE buffer
has not completed when a GTRC receives this
command, it defers the transmission pending
completion of the buffer-filling operation. At most one
such command can be outstanding at any time, since
the state of the FIFOs must be reevaluated after each
such data transfer. If there are outstanding requests to
fill both GTRC buffers, the TEM queues the command
to empty the second buffer to the GTCC FIFOs
pending the completion of the first outstanding
command. Note that the GTRC does not notify the
TEM when it finishes transferring the contents of a
GTFE buffer to a GTRC buffer except in that it defers
execution of a command to empty that GTRC buffer.
Therefore, the TEM buffer model cannot mark either
the GTFE buffer or the GTRC buffer as empty until
event data have been transferred from the GTRC
buffer to the GTCC FIFO. If the event data volume in
the buffers in the 9 daisy-chained GTRCs that feed into
a single GTCC FIFO exceeds the available space
within that FIFO, the excess data are discarded and an
error is generated.

TKR data flow downstream of the TEM utilizes a
push model with backpressure from the EPUs’ main
memory circular buffers to the LCBs, from the LCBs
to the EBM, and from the EBM to the TEMs. The
EBM asserts backpressure to a TEM whenever the
corresponding 8-kB circular buffer is at least half full.
The TEM defers initiation of the transfer of an event
contribution until this backpressure is absent, but does
not respond to backpressure once a transfer is already
in progress. The EBM discards the excess in an event
contribution over 4,080 bytes and generates an error.
Since the maximum length of a “normal” TEM event

 3

contribution is slightly more than 3 kB, data are only
discarded in the rare combination of an event with an
exceedingly large volume of data concatenated with an
error contribution which approaches its maximum
length. Even in these cases it is the tail end of the error
description that is truncated.

The remaining stages of data flow utilize
backpressure to suspend and resume a data transfer,
and never discard data from the DAQ pipeline.
However, the data transfer from the EBM to the LCB
always occurs in units of 128-byte cells, and the
backpressure request to suspend transmission is not
honored by the EBM until the end of the current cell.
In addition, there is hysteresis in the flow control in
that the backpressure is not removed until the LCB
event data FIFO falls below ¾ full. The timing of the
assertion of backpressure is also inexact, and is based
on a worst-case estimate of the data volume within the
FIFO, assuming that data were only written into the
FIFO and not removed from the FIFO since it last
became at least ¾ full.

Lesson 1: Chose Proper Data Formats
The Si strips in the LAT have a thickness that is

approximately twice their width. The TKR is required
to maintain acceptance down to cos θ of 0.2, where θ is
the usual polar angle from the zenith in spherical
coordinates. This implies that an individual track may
intersect up to 10 strips in a single TKR layer. Since
the available phase space tends to zero near the zenith,
the mean number of hits per track in a layer is
significantly larger than unity. Therefore, a data
format that describes a cluster of adjacent hit strips
rather than a single hit would have made more efficient
use of available buffer space and data transfer
bandwidth. A rational format might have appended 4
bits of cluster width (biased by 1) to the existing 11-bit
format in the GTRC and 12-bit format downstream.

Lesson 2: Provide Adequate Buffer Volume
The volume of buffer space provided to hold zero-

suppressed TKR hit strip addresses at each stage in the
DAQ pipeline has a potential impact on track-finding
efficiency, and thus on detector acceptance. Although
the size of the LAT’s LCB FIFO was dictated by
available components, the volume of SRAM buffer
space dedicated to each TEM was chosen to provide
space for two maximum-sized TEM event
contributions, and was only 1/64 of the space available
within the SRAM part. However, the size of the GTRC
buffers and GTCC FIFOs were determined with the
guidance of a Monte Carlo simulation of DAQ system
performance with insufficient physics input. Although

the GTRC buffer size proved adequate (and would
have been more efficiently utilized given the proper
choice of data format), the 128-hit capacity of the
GTCC FIFO appears to be insufficient to handle the
worst-case requirements of 9 GTRC buffers each
containing up to 64 hits, especially if data from
previous events remain in the FIFO. Although this
FIFO occupies a significant fraction of the available
die area in the space-worthy GTCC design, the die size
for the GCCC was increased to contain a data FIFO
twice the size of that in the GTCC. A similar increase
in GTCC FIFO size would have eliminated a major
DAQ pipeline chokepoint.

Lesson 3: Understand Truncation/Acceptance
Si tracking systems have large numbers of channels

with very low average occupancies. Occasionally,
either the underlying physics or electronic noise results
in an event whose occupancy stresses the capacity of
buffers for zero-suppressed data either locally or
globally. In extreme cases, it becomes necessary to
truncate the event dataset and discard some zero-
suppressed data. It is vitally important to have a
clearly expressed, coherent policy for doing so, and to
fully understand the effects of this policy on detector
acceptance. It is also necessary to mark each event if
its data are truncated anywhere in the pipeline, and
advisable to note the data volume discarded.

It is highly tempting to take advantage of the low
average occupancy to increase the pipeline’s duty
cycle by removing backpressure when it becomes
statistically unlikely, but not impossible, for the size of
the next upstream event to exceed the volume of
downstream buffer space currently available. This
temptation should be avoided unless the downstream
buffer is not FIFO-like, i.e. it provides a fixed capacity
for the next event regardless of the frequency of recent
events or their average event size. Failure to do so can
engender a track-finding efficiency, and thus an
acceptance, that is dependent not only upon detector
and event geometries but also on the recent time
history of the detector when an event occurs.
Specifically, it is useful to limit truncation to the initial
zero-suppression stage of the pipeline, and to perform
that suppression into a fixed-length output buffer
rather than a FIFO.

Although initial hard-wired LAT design features
that permitted the removal of backpressure when space
for a maximum-length event fragment was not
available in a downstream FIFO have been largely
eliminated from the DAQ system, it remains possible
to configure the combination of the maximum hits
stored in each GTRC buffer and the “almost full”

 4

threshold in the GTCC FIFOs so that the transport of
event data from a GTRC daisy-chain to its GTCC may
be initiated when there is potentially insufficient space
in the FIFO to absorb those data. Discussion of the
appropriate settings for these configuration parameters
is ongoing, and seems likely to persist until the LAT
reaches orbit.

2 PLATFORM FPGAS
With the announcement of the Xilinx Virtex-II Pro

family of FPGAs in 2002, and its subsequent
availability in small quantities in 2003, it became
possible to design DAQ architectures for Si tracking
detectors with PowerPC processing systems embedded
in the FPGAs within the DAQ pipeline. The FPGAs in
this family contain up to two PowerPC-405 processor
cores as hard macros at specific locations on the die.
Each processor runs at up to 300 MHz internal clock
frequency and has a Harvard architecture with a 16 kB,
two-way set associative level-1 cache for each of the
data and instruction paths. Each part also has up to 20
multi-gigabit transceiver (“MGT”) hard macros
operating at up to 3.125 gigabits/second in most parts,
but up to 6.25 gigabits/second in a few parts. The
surrounding FPGA fabric provides up to 444 18-kilobit
block memories, up to 444 18 x 18 multipliers, and up
to 44,096 logic slices, where each slice contains two 4-
input lookup tables (“LUTs”), two register bits, and
additional carry/multiplier/multiplexer support logic.

The subsequent Virtex-4 FX sub-family increases
the maximum number of available MGTs to 24, of
block memories to 552, and of slices to 63,168, while
increasing the maximum PowerPC clock frequency to
450 MHz and increasing the performance of the FPGA
fabric. It replaces the multipliers by up to 192 flexible
500 MHz multiply-adder/multiply-accumulator digital
signal processing (“DSP”) slices with registered 48-bit
adders. Larger numbers of these slices are available in
another sub-family optimized for DSP applications
without embedded PowerPCs. Larger members of the
Virtex-4 FX sub-family are not yet widely available.
The recently announced Virtex-5 family is based on
the migration of the Si process from 90 to 65
nanometer feature size. Block memories grow from 18
to 36 kB, LUTs change from 4 to 6 inputs, and DSP
performance increases from 500 to 550 MHz while one
multiplier input width grows from 18 to 25 bits.
However, details of the FX sub-family with embedded
hard processors have not yet been announced.
Nevertheless, it is reasonable to assume that
performance will continue to improve as feature size
decreases.

Initial Implementation Experience
Experience at implementing platform FPGA systems

was gained with an XC2VP50 Virtex-II Pro part with a
single PowerPC running at 250 MHz, a single MGT at
1.25 gigabits/second, and most internal busses clocked
at 125 MHz. A custom real-time operating system
(“RTOS”) providing thread scheduling and inter-
thread communication services was developed, and
resides wholly within a small portion of the 128 kB of
on-chip program memory and 64 kB of on-chip data
memory implemented in 96 of the fabric block
memories. In addition to these memories, the
processor is equipped with two 8-megabyte banks of
64-bit external zero bus turnaround static memory,
again clocked at 125 MHz. This system was
developed to test advanced concepts for embedding
processing in the DAQ component of control systems
for pulsed accelerators with significant real-time
requirements on pulse-to-pulse fast feedback, and is
currently undergoing final application software
development prior to future deployment at SLAC.

The techniques developed in this Virtex-II Pro board
are now being extended to an XC4VFX60 Virtex-4,
with an initial increase of processor clock frequency to
350 MHz and of bus clock frequency to 175 MHz.
The external memory is replaced by reduced latency
dynamic memory (“RLDRAM-II”) with separate pins
for write and read data that can operate concurrently.
A 64-bit bank of these parts thus provides up to 5.6
gigabytes/second of combined write/read bandwidth at
175 MHz clock frequency because of the double-data-
rate (“DDR”) protocol employed on the data lines.
The configuration for accelerator controls is based on
an asymmetric combination of two processors sharing
a single bank of RLDRAM-II, with a custom RTOS
operating on one processor for hard real-time functions
and a commercial RTOS (e.g. VxWorks or RTEMS)
with a full TCP/IP stack on the second processor for
more feature-rich but less time-critical applications.
Design variants with separate RLDRAM-II banks on
each processor, and employing a commercial RTOS,
are also under development for potential applications
in the control module for the SLAC “Petacache”
project and the camera control system of the Large
Synoptic Survey Telescope (“LSST”). Portions of
these FPGA designs have been successfully placed and
routed by the development tools, but prototype boards
containing these parts are still under design.

Pitfalls
The principal limitations on the performance of the

embedded processors in the Virtex-II Pro and Virtex-4

 5

FX families stem from the following architectural
features:

1. The processor clock frequency must be an
integral multiple, usually a factor of two, of the
clock frequency of the processor local bus
(“PLB”), which is the external connection to the
level-1 caches.

2. The design of the PLB, and particularly of its
arbitration logic, leads to large amounts of
combinatorial logic and long delays between
pipeline registers, thus engendering low bus
clock frequency when systems contain large
numbers of potential bus masters.

3. The lack of a level-2 cache and the small size of
the level-1 cache lead to frequent data cache
misses when executing DAQ applications in
which the pipeline passes through the processor
itself rather than around it.

4. Although the PLB protocol itself permits
pipelining of an arbitrary depth, the level-1
cache interface to the PLB does not support
having more than two read requests and one
write request outstanding simultaneously. This
largely negates the advantages of having high-
performance code “touch” cache lines, thereby
pre-fetching their contents into the cache, well
in advance of the time that these contents are
required by the underlying algorithm.

5. Errata in the interface between the cache and
the on-chip block memory controller prevent
the use of any pipelining between the
processor’s execution elements and caches
when a mix of on-chip memory and PLB-
accessible memory is employed.

6. The combination of the complexity of the PLB
protocol and the necessity for deep pipelines in
the read data paths for high-performance DDR
memory technologies such as RLDRAM-II lead
to large delays when a cache miss results in the
need to fetch a cache line from external
memory. These delays can easily reach 20 bus
clock ticks or 40 processor clock ticks, even
when bus/memory arbitration is won after the
minimum possible delay.

The combination of these features leads to the
observation that, at least for now, the most reasonable
use of the embedded processor is to control a DAQ
pipeline which actually passes through the on-chip
DSP components, rather than through the processor
itself. A contemplated application employing 36 DSP
slices to multiply a 144 x 144 matrix and a 144-
element vector every 4 microseconds to perform a
channel-to-channel crosstalk correction on incoming

pixels from the LSST camera in real-time might serve
as an example of such an architecture.

Space-Borne Application Prospects
The use of digital logic in space-borne applications

is always complicated by single-event upsets (“SEUs”)
resulting from ionization deposited by cosmic rays.
GLAST dealt with this problem by choosing an Actel
FPGA family that was radiation hardened, employed
triplication and voting within the feedback paths of
each register bit in the FPGA fabric, and utilized one-
time programmable anti-fuses to establish both logic
function and signal routing within the fabric. In
contrast, Virtex and related FPGA architectures
employ static memory to specify fabric logic function
via lookup table, as well as to configure routing
resources. This leads to a requirement that mitigation
for SEUs must be developed for the configuration
memory and on-chip processor data and program
memories, as well as for data buffers and other
functions implemented in block memory, in addition to
the usual SEU protection via triplication and voting in
register storage and ECC in external memories.

Despite these obstacles, the large feature sets, high
performance and density, and presence of both
embedded processors and DSP slices makes the use of
platform FPGAs in space-borne Si trackers
exceedingly attractive. As a result, SEU mitigation is
being developed via a combination of manufacturing
techniques (radiation hardening, block memories with
hardware error correction), additional software steps in
the development chain (automatic triplication and
voting of fabric registers), and additional logic to
periodically restore the contents of configuration
memories to their initial state by rewriting their
contents during the course of normal operation from an
SEU-tolerant known good source (configuration
memory “scrubbing”).

3 ACKNOWLEDGMENTS
The author had the distinct privilege of participating

in the implementation and debugging of the GLAST
LAT DAQ system, joining a collaboration each of
whose members was highly competent. Enlightening
conversations, especially with G. Haller, M. Huffer,
J.J. Russell, and R. Johnson, are gratefully
acknowledged. Much of the non-GLAST work
described herein has been supported by the U. S.
Department of Energy under SBIR grant no. DE-
FG02-05ER84366, as well as subcontracts under the
SLAC operating contract.

