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Ingredients

Aim: Examination of scalar scattering with Graviton
exchange

Starting point: Linearized Einstein-Hilbert-Lagrangian in
d = 4 + n dimensions

metric gµν is the carrier of the gravitational force
n extra dimensions are large and compact
→ d-dimensional Planck Mass M = O(TeV)

extra dimensions generate Kaluza-Klein tower of
Gravitons
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Fixed Point Gravity
But: KK-integral is not UV-safe
→ use results from Fixed Point Gravity (cf. Weinberg ’79)
UV governed by interacting fixed point g ∗ of coupling g

I(n)(x) ∝
∞∫

0

dm mn−1P(x ,m,Λ) ,PIR(x ,m,Λ) =
1

x −m2

KK-integral becomes UV-safe (no cutoff!)
use different parametrization for IR-UV transition
motivated by FPG [3]
important parameter: crossover scale Λ, related to g ∗
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Feynman Diagrams for Higgs (Single Graviton)
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Higgs Scattering

M = I (n)(s)

(
n s2

n + 2
+ 2t2 + 2ts

)
+ I (n)(t)

(
n t2

n + 2
+ 2s2 + 2ts

)
+ I (n)(−s − t)

(
s2 + t2 − 2(s + t)2

n + 2

)

remember: I (n)(x) ∝
∞∫
0

dm mn−1P(x ,m,Λ)

application of unitarity constraints to examine breakdown
energy s resp. bounds on parameters
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Unitarity Constraints I
partial wave amplitude for J = 0

a0(s) =
1

16π s

0∫
−s

M(s, t) dt

unitarity of the S-matrix implies here:

|Re (a0)| < 1 ∨ |a0| < 2

s-channel unitarity leads to upper bound on Λ:

Λcrit = sup
{

Λ |
∣∣∣a(s)

0 (s,Λ)
∣∣∣ < 2

}
Jan Schröder Scattering in Fixed Point Gravity 6 / 13



Introduction
Unitarity in Single Graviton Exchange
Outlook Multiple Graviton Exchange

Conclusion

Unitarity Constraints II

t/u channel unitarity is violated at scrit:∣∣∣Re [a(t,u)
0 (scrit)

]∣∣∣ = 1

scrit depends on Λ and n
t/u channel unitarity always violated for large s
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Results: Critical s
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Figure: t/u channel: "Minus", lin, re
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Eikonal Approximation

Multiple Graviton Exchange
for spin 2 exchanges, the eikonal approximation is the nlo
contribution in the kinematic regime of low angle
scattering t � s
eikonal approximation is the summation of an infinite
class of ladder diagrams
restriction: only Graviton exchanges, only t-channel
diagrams, only leading kinematic contribution in s/t
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Eikonal Amplitude

AEik = −4π i s

∞∫
0

db J0(q b) (exp[i χ(b)]− 1)

χ(b) =
1
2 s

∞∫
0

dq
2π

J0(b q) ABorn(q2)

q: absolute exchanged momentum t = −q2

b: impact parameter, [length], Fourier conjugate variable
to q
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Aims

calculate χ and AEik and capture the essential behaviour
in arbitrary extra dimensions
compare results to other scenarios for Eikonal Graviton
Exchange, namely Dimensional Regularisation (Giudice,
Rattazzi, Wells), Finite Brane Width Scenario (Sjödahl,
Gustafson), Effective Field Theory (Litim, Old - work in
progress)
examine unitarity behaviour
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Summary

KK-integration can be made UV-safe using results from
Fixed Point Gravity
unitarity breakdown as studied in Higgs scattering via
single-graviton exchange typically occurs beyond the
fundamental Planck scale:

√
scrit > M

crossover scale Λ has upper bound: Λmax = O(M)

Eikonal calculation will give further insight into the FPG
phenomenology of scalar scattering
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Parametrizations of the KK Integral
renormalization approach:

∞∫
0

dm mn−1 1
x −m2 Z−1

i (µ)

anomalous dimension approach:
∞∫

0

dm mn−1 Λ2 ∆i

(x −m2)1+∆i

minus approach:
∞∫

0

dm mn−1 Λ2 ∆i

(x −m2)(|x |+ m2)∆i
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Approximations for Z and η
quench:

Z (µ) =

{
1 µ < Λ
µ2+n

Λ2+n µ ≥ Λ
, η(µ) =

{
0 µ < Λ

−2− n µ ≥ Λ

linear:

Z (µ) = 1 +
µ2+n

Λ2+n , η(µ) = −(2 + n)(1− Z−1(µ))

quadratic:

Z (µ) =

√
1 +

(
µ2+n

2Λ2+n

)2

+
µ2+n

2Λ2+n , η(µ) = −(2 + n)
Z 2(µ)− 1
Z 2(µ) + 1
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Λ Matching

different Λparam are matched through IR condition:

lim
x→0

∞∫
0

dm mn−1Pi(x ,m,Λi) = lim
x→0

∞∫
0

dm mn−1Pk(x ,m,Λk)
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