
Electrons in the AOD

 Outline:
− The ATLAS EM calorimeter

 Showers/cells/clusters & calibration
  (see my talk from yesterday)

− Electrons in real Life
 Identification of electrons in our detector.
 What observables to use?

− Electrons in the AOD
 What variables to use for identification
 How to access cluster/track information or other

information one might need for analysis
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Electron identification in real Life
 How to identify electrons (in very simple words):

− shower in the EM calorimeter
− energy deposited in cells/compartments of the calorimeter
− Cells/compartments form clusters
- position/energy of cluster gives information

about position and energy of shower
- check if cluster is matching with a track

(separate electrons and photons).
- do some cuts on calorimeter/track observables

to reject jets.

 Discriminating variables from the calorimeters
− Hadronic leakage

 Electromagnetic showers deposit a small amount of energy in the hadronic calorimeter, typically less than
2% for electrons.

− Use of the second compartment of the EM calorimeter
 Electromagnetic showers deposit most of their energy in the second sampling of the electromagnetic

calorimeter. Variables used:
− The lateral shower shape, Rη(37), is given by the ratio of the energy reconstructed in a 3× 7 cluster by

the energy in a 7× 7 cluster. This variable shows a peak near one for electrons because of the very
small lateral leakage; large tails at lower values of Rη(37) for the jets are expected.

− The lateral width is calculated with a window of 3× 5 cells using the energy weighted sum over all
cells, which depends on the particle impact point inside the cell



 Discriminating variables from the calorimeters (2)
− Use of the first compartment of the EM calorimeter

 The first compartment with its very fine granularity in rapidity can be used to detect
substructures within a shower and thus isolated π0 discriminated against efficiently.
Variables used:

− ΔE = Emax2 - Emin

− ΔEmax2 = Emax2/(1+9(5)× 10-3 ET), with ET the transverse energy of the cluster

− ωtot1~=~√(∑ Ei × ( i-imax)2 / ∑ Ei), where i is the strip number and imax the
strip number of the first local maximum.

− Fside = [ E(± 3) - E(± 1)]/E(± 1), where E(± n) is the energy in ± n strips
around the strip with highest energy.

− ω3 strips = √{∑ Ei × ( i-imax)2 / ∑ Ei}, where i is the number of the strip and imax

the strip number of the most energetic one.



 Discriminating variables from the inner detector
− Track quality cuts

 at least nine precision hits (Pixel+SCT)

 at least two hits in the pixels, one of which being in the b-layer

 a transverse impact parameter A0 < 0.1 cm

− Inner detector/calorimeter spatial matching information
   Δη = |ηstrips -ηID|, where ηstrips is computed in the first sampling of the

electromagnetic calorimeter, where the granularity is very fine, and ηID is the
pseudo-rapidity of the track extrapolated to the calorimeter.

   Δφ = |φmiddle -φID|, where φmiddle is computed in the second compartment of
the electromagnetic calorimeter and φID is the azimuth of the track
extrapolated to the calorimeter.



 Discriminating variables from the inner detector (2)
− Inner Detector/calorimeter energy matching information

 The energy E measured in the electromagnetic calorimeter is compared to the
momentum p measured in the Inner Detector. In the case of an electron, the
momentum should match the energy.

− Transition radiation in the TRT information
 A further reduction of the charged hadron contamination is obtained by rejecting

tracks having a low fraction of high-threshold hits. The discriminating variable used
is the ratio Nhigh/Nall between the number of high threshold hits and the total
number of TRT hits.



Identification efficiences

 IsEM tight



Electrons in the AOD
 The electron collection in the AOD, the keys to use are:

− For the collection: ElectronAODCollection
− For the details (Shower/Trackmatch): egDetailAOD

 ElectronAODcollection
− If a cluster has a matched track, the egamma object is added to the

electron collection

 IsEM flag
− The candidate has to pass a series of cuts based on the shower shape

properties in different compartments of the calorimeter as well as
variables combining ID and Calo informations (see previous slides). If
a cut is not passed, then a bit is set in the IsEM flag

− You can use the bit mask to use only certain parts of the ID criteria



 Predefined set of cuts:
− Loose cuts:  electron->isem(ElectronLoose)==0

− Calorimeter cuts only
− Medium cuts:  electron->isem(ElectronMedium)==0

− Calorimeter cuts & Track quality cuts (no b-layer)
− Tight cuts:  electron->isem(ElectronTight)==0

− All cuts (previous & Track matching & TRT cuts)
− All these cuts can be turned on or off individually using bit masks

enum BitDef {
    // Cluster based egamma
    ClusterEtaRange        =  0,
    ClusterHadronicLeakage =  1,
    ClusterMiddleEnergy    =  4,
    ClusterMiddleEratio37  =  5,
    ClusterMiddleEratio33  =  6,
    ClusterMiddleWidth     =  7,
    ClusterStripsEratio    =  8,
    ClusterStripsDeltaEmax2=  9,
    ClusterStripsDeltaE    = 10,
    ClusterStripsWtot      = 11,
    ClusterStripsFracm     = 12,
    ClusterStripsWeta1c    = 13,
    ClusterIsolation       = 14,
    //Track based egamma
    TrackBlayer            = 16,
    TrackPixel             = 17,
    TrackSi                = 18,
    TrackA0                = 19,
    TrackMatchEta          = 20,
    TrackMatchPhi          = 21,
    TrackMatchEoverP       = 22,
    TrackTRThits           = 24,
    TrackTRTratio          = 25,
    TrackTRTratio90        = 26
  };



 How to use the IsEM flag?
StoreGateSvc* m_storeGate;
const ElectronContainer* electronColl;
m_storeGate->retrieve(electronColl, "ElectronAODCollection");

ElectronContainer::const_iterator eleItr = electronColl->begin();
ElectronContainer::const_iterator eleEnd = electronColl->end();

for(; eleItr != eleEnd; ++eleItr) {
int isemLoose = (*eleItr)->isem(egammaPID::ElectronLoose);
int isemMedium = (*eleItr)->isem(egammaPID::ElectronMedium);
int isemTight = (*eleItr)->isem(egammaPID::ElectronTight);
if (isemLoose == 0) std::cout  <<   looooooose cut passed  "  << std::endl;
}

If you want to apply your own set of cuts you can use the bit masks like this:
For example, let’s say you want to use only the E/p cut and the Hadronic Leakage
(of course you wouldn’t wanna do that)

The bit definition on the previous slide tells us:
E/p cut is bit number 22
Hadronic Leakage is bit number 1
So you do:
(*electron)[index]-> isem(0x400002);

WARNING: Bit definition is different in 12.0.X
Closest to loose definition:   (isem & 0x7)==0
Closest to medium: (isem & 0x3FF)==0
Closest to tight: isem = 0



 All calorimeter observables used for identification
are accessible in the AOD:
− Shower variables

 egammaParameters::etcone20  : isolation energy (transverse) in a cone with half-opening angle 0.2
 egammaParameters::ethad1 : transverse energy in the first sampling of the hadronic calorimeters behind the cluster
 egammaParameters::e233 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x3

egammaParameters::e237 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x7
egammaParameters::e277 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 7x7
egammaParameters::weta1

 egammaParameters::weta2
 egammaParameters::f1
 egammaParameters::e2tsts1
 egammaParameters::emins1
 egammaParameters::wtots1
 egammaParameters::fracs1
 egammaParameters::f1core
 egammaParameters::f3core
 egammaParameters::pos7
 egammaParameters::iso
 egammaParameters::widths2
 egammaParameters::zvertex
 egammaParameters::errz
 egammaParameters::etap : pointing eta reconstructed from the cluster (first and second sampling)
 egammaParameters::depth



  EMTrackMatch variables

− egammaParameters::EtaCorrMag
− egammaParameters::EoverP : ratio of the cluster energy and the track momentum
− egammaParameters::deltaEta1 : difference between the cluster eta (first sampling) and the eta of the track

extrapolated to the first sampling
− egammaParameters::deltaEta2 :difference between the cluster eta (second sampling) and the eta of the track

extrapolated to the second sampling
− egammaParameters::deltaPhi2 : difference between the cluster phi (second sampling) and the phi of the track

extrapolated to the second sampling

 How to access EMShower and EMTrackMatch information

const EMShower *shower;
    shower = (*eleItr)->detail<EMShower>("egDetailAOD")
    float etcone = shower->parameter(egammaParameters::etcone20)

const EMTrackMatch *trackmatch;
    trackmatch = (*eleItr)->detail<EMTrackMatch>("egDetailAOD")
    float etcone = shower->parameter(egammaParameters ::EoverP )



 Clusters and Tracks
pointer to CaloCluster :        const CaloCluster * egamma::cluster() const
pointer to TrackParticle :      const Rec::TrackParticle * egamma::trackParticle() const

(*eleItr)->trackParticle()->phi()
(*eleItr)->trackParticle()->eta()
(*eleItr)->trackParticle()->measuredPerigee()->parameters()[Trk::d0]
(*eleItr)->trackParticle()->measuredPerigee()->localErrorMatrix().error(Trk::d0)
(*eleItr)->trackParticle()->trackSummary()->get(Trk::numberOfBLayerHits)
(*eleItr)->trackParticle()->trackSummary()->get(Trk::numberOfPixelHits)

(*eleItr)->cluster() ->phi()
(*eleItr)->cluster() ->eta()
(*eleItr)->cluster() -> energy()
(*eleItr)->cluster() -> energyBE(0)
(*eleItr)->cluster() -> energyBE(1)
(*eleItr)->cluster() -> energyBE(2)
(*eleItr)->cluster() -> energyBE(3)


