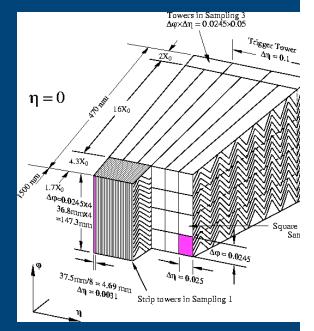
# Electrons in the AOD


Nicolas Kerschen (Sheffield)

- Outline:
  - The ATLAS EM calorimeter
    - Showers/cells/clusters & calibration (see my talk from yesterday)
  - Electrons in real Life
    - Identification of electrons in our detector.
    - What observables to use?
  - Electrons in the AOD
    - What variables to use for identification
    - How to access cluster/track information or other information one might need for analysis

# **Electron identification in real Life**

### • How to identify electrons (in very simple words):

- shower in the EM calorimeter
- energy deposited in cells/compartments of the calorimeter
- Cells/compartments form clusters
- position/energy of cluster gives information about position and energy of shower
- check if cluster is matching with a track (separate electrons and photons).
- do some cuts on calorimeter/track observables to reject jets.



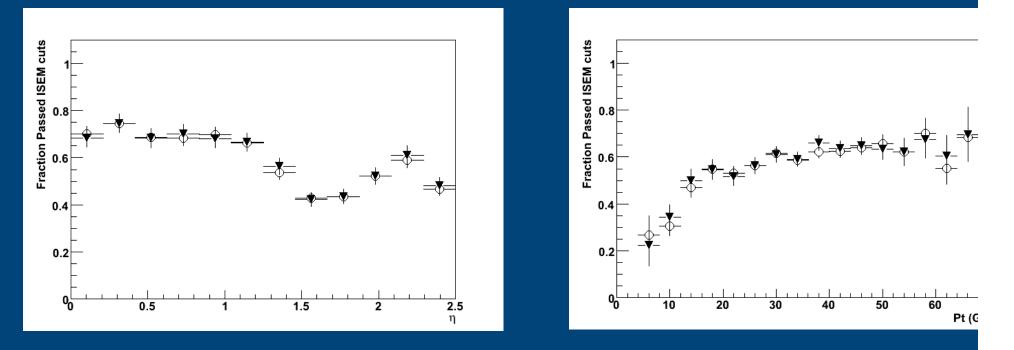
### • Discriminating variables from the calorimeters

- Hadronic leakage
  - Electromagnetic showers deposit a small amount of energy in the hadronic calorimeter, typically less the 2% for electrons.
- Use of the second compartment of the EM calorimeter
  - Electromagnetic showers deposit most of their energy in the second sampling of the electromagnetic calorimeter. Variables used:
    - The lateral shower shape, Rη(37), is given by the ratio of the energy reconstructed in a 3× 7 clu the energy in a 7× 7 cluster. This variable shows a peak near one for electrons because of the ve small lateral leakage; large tails at lower values of Rη(37) for the jets are expected.
    - The lateral width is calculated with a window of 3× 5 cells using the energy weighted sum over a cells, which depends on the particle impact point inside the cell

### Discriminating variables from the calorimeters (2)

- Use of the first compartment of the EM calorimeter
  - The first compartment with its very fine granularity in rapidity can be used to dete substructures within a shower and thus isolated  $\pi_0$  discriminated against efficiently Variables used:
    - $\Delta E = E_{max2} E_{min}$
    - $\Delta E_{max2} = E_{max2}/(1+9(5) \times 10-3 E_T)$ , with  $E_T$  the transverse energy of the clust
    - ωtot1~=~ $\sqrt{(\Sigma E_i \times (i-i_{max})^2 / \Sigma E_i)}$ , where i is the strip number and  $i_{max}$  the strip number of the first local maximum.
    - Fside =  $[E(\pm 3) E(\pm 1)]/E(\pm 1)$ , where  $E(\pm n)$  is the energy in  $\pm n$  strips around the strip with highest energy.
    - $\omega$ 3 strips =  $\sqrt{\{\Sigma E_i \times (i-i_{max})2 / \Sigma E_i\}}$ , where i is the number of the strip and the strip number of the most energetic one.

### • Discriminating variables from the inner detector


- Track quality cuts
  - at least nine precision hits (Pixel+SCT)
  - at least two hits in the pixels, one of which being in the b-layer
  - a transverse impact parameter A0 < 0.1 cm
- Inner detector/calorimeter spatial matching information
  - $\Delta \eta = |\eta_{strips} \eta_{ID}|$ , where  $\eta_{strips}$  is computed in the first sampling of the electromagnetic calorimeter, where the granularity is very fine, and  $\eta_{ID}$  is the pseudo-rapidity of the track extrapolated to the calorimeter.
  - $\Delta \phi = |\phi_{middle} \phi_{ID}|$ , where  $\phi_{middle}$  is computed in the second compartment of the electromagnetic calorimeter and  $\phi_{ID}$  is the azimuth of the track extrapolated to the calorimeter.

### Discriminating variables from the inner detector (2)

- Inner Detector/calorimeter energy matching information
  - The energy E measured in the electromagnetic calorimeter is compared to the momentum p measured in the Inner Detector. In the case of an electron, the momentum should match the energy.
- Transition radiation in the TRT information
  - A further reduction of the charged hadron contamination is obtained by rejecting tracks having a low fraction of high-threshold hits. The discriminating variable use is the ratio  $N_{high}/N_{all}$  between the number of high threshold hits and the total number of TRT hits.

## Identification efficiences

## • IsEM tight



## **Electrons in the AOD**

- The electron collection in the AOD, the keys to use are:
  - For the collection: ElectronAODCollection
  - For the details (Shower/Trackmatch): egDetailAOD
- ElectronAODcollection
  - If a cluster has a matched track, the egamma object is added to the electron collection
- IsEM flag
  - The candidate has to pass a series of cuts based on the shower shape properties in different compartments of the calorimeter as well as variables combining ID and Calo informations (see previous slides). If a cut is not passed, then a bit is set in the IsEM flag
  - You can use the bit mask to use only certain parts of the ID criteria

- Predefined set of cuts:
  - Loose cuts: electron->isem(ElectronLoose)==0
    - Calorimeter cuts only
  - Medium cuts: electron->isem(ElectronMedium)==0
    - Calorimeter cuts & Track quality cuts (no b-layer)
  - Tight cuts: electron->isem(ElectronTight)==0
    - All cuts (previous & Track matching & TRT cuts)
  - All these cuts can be turned on or off individually using bit masks

enum BitDef {

// Cluster based egamma ClusterEtaRange = 0,ClusterHadronicLeakage = 1,ClusterMiddleEnergy = 4, ClusterMiddleEratio37 = 5, ClusterMiddleEratio33 = 6. ClusterMiddleWidth = 7, ClusterStripsEratio = 8, ClusterStripsDeltaEmax2= 9, ClusterStripsDeltaE = 10, ClusterStripsWtot = 11, ClusterStripsFracm = 12, ClusterStripsWeta1c = 13, ClusterIsolation = 14, //Track based egamma = 16,TrackBlayer TrackPixel = 17, TrackSi = 18,TrackA0 = 19.TrackMatchEta = 20,TrackMatchPhi = 21, TrackMatchEoverP = 22, TrackTRThits = 24, TrackTRTratio = 25, TrackTRTratio90 = 26

### • How to use the IsEM flag?

StoreGateSvc\* m\_storeGate; const ElectronContainer\* electronColl; m storeGate->retrieve(electronColl, "ElectronAODCollection");

```
ElectronContainer::const_iterator eleItr = electronColl->begin();
ElectronContainer::const_iterator eleEnd = electronColl->end();
```

```
for(; eleItr != eleEnd; ++eleItr) {
int isemLoose = (*eleItr)->isem(egammaPID::ElectronLoose);
int isemMedium = (*eleItr)->isem(egammaPID::ElectronMedium);
int isemTight = (*eleItr)->isem(egammaPID::ElectronTight);
if (isemLoose == 0) std::cout << loooooose cut passed " << std::endl;
}</pre>
```

If you want to apply your own set of cuts you can use the bit masks like this: For example, let's say you want to use only the E/p cut and the Hadronic Leakage (of course you wouldn't wanna do that)

The bit definition on the previous slide tells us: E/p cut is bit number 22 Hadronic Leakage is bit number 1 So you do: (\*electron)[index]-> isem(0x40000<u>2);</u>

WARNING: Bit definition is different in 12.0.X Closest to loose definition: (isem & 0x7)==0 Closest to medium: (isem & 0x3FF)==0 Closest to tight: isem = 0

### All calorimeter observables used for identification are accessible in the AOD:

- Shower variables
  - egammaParameters::etcone20 : isolation energy (transverse) in a cone with half-opening angle 0.2
  - egammaParameters::ethad1 : transverse energy in the first sampling of the hadronic calorimeters behind the clu
  - egammaParameters::e233 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x3 egammaParameters::e237 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x3 egammaParameters::e277 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 7x3 egammaParameters::weta1
  - egammaParameters::weta2
  - egammaParameters::f1
  - egammaParameters::e2tsts1
  - egammaParameters::emins1
  - egammaParameters::wtots1
  - egammaParameters::fracs1
  - egammaParameters::f1core
  - egammaParameters::f3core
  - egammaParameters::pos7
  - egammaParameters::iso
  - egammaParameters::widths2
  - egammaParameters::zvertex
  - egammaParameters::errz
  - egammaParameters::etap : pointing eta reconstructed from the cluster (first and second sampling)
  - egammaParameters::depth

#### • EMTrackMatch variables

- egammaParameters::EtaCorrMag
- egammaParameters::EoverP : ratio of the cluster energy and the track momentum
- egammaParameters::deltaEta1 : difference between the cluster eta (first sampling) and the eta of the track extrapolated to the first sampling
- egammaParameters::deltaEta2 :difference between the cluster eta (second sampling) and the eta of the track extrapolated to the second sampling
- egammaParameters::deltaPhi2 : difference between the cluster phi (second sampling) and the phi of the track extrapolated to the second sampling

#### • How to access EMShower and EMTrackMatch information

const EMShower \*shower; shower = (\*eleItr)->detail<EMShower>("egDetailAOD") float etcone = shower->parameter(egammaParameters::etcone20)

const EMTrackMatch \*trackmatch; trackmatch = (\*eleItr)->detail<EMTrackMatch>("egDetailAOD") float etcone = shower->parameter(egammaParameters ::EoverP)

## • Clusters and Tracks

pointer to CaloCluster :const CaloCluster \* egamma::cluster() constpointer to TrackParticle :const Rec::TrackParticle \* egamma::trackParticle() const

(\*eleItr)->trackParticle()->phi()
(\*eleItr)->trackParticle()->eta()
(\*eleItr)->trackParticle()->measuredPerigee()->parameters()[Trk::d0]
(\*eleItr)->trackParticle()->measuredPerigee()->localErrorMatrix().error(Trk::d0)
(\*eleItr)->trackParticle()->trackSummary()->get(Trk::numberOfBLayerHits)
(\*eleItr)->trackParticle()->trackSummary()->get(Trk::numberOfPixelHits)

(\*eleItr)->cluster() ->phi()
(\*eleItr)->cluster() ->eta()
(\*eleItr)->cluster() -> energy()
(\*eleItr)->cluster() -> energyBE(0)
(\*eleItr)->cluster() -> energyBE(1)
(\*eleItr)->cluster() -> energyBE(2)
(\*eleItr)->cluster() -> energyBE(3)