
Electrons in the AOD

 Outline:
− The ATLAS EM calorimeter

 Showers/cells/clusters & calibration
 (see my talk from yesterday)

− Electrons in real Life
 Identification of electrons in our detector.
 What observables to use?

− Electrons in the AOD
 What variables to use for identification
 How to access cluster/track information or other

information one might need for analysis

Nicolas Kerschen (Sheffield)

Electron identification in real Life
 How to identify electrons (in very simple words):

− shower in the EM calorimeter
− energy deposited in cells/compartments of the calorimeter
− Cells/compartments form clusters
- position/energy of cluster gives information

about position and energy of shower
- check if cluster is matching with a track

(separate electrons and photons).
- do some cuts on calorimeter/track observables

to reject jets.

 Discriminating variables from the calorimeters
− Hadronic leakage

 Electromagnetic showers deposit a small amount of energy in the hadronic calorimeter, typically less than
2% for electrons.

− Use of the second compartment of the EM calorimeter
 Electromagnetic showers deposit most of their energy in the second sampling of the electromagnetic

calorimeter. Variables used:
− The lateral shower shape, Rη(37), is given by the ratio of the energy reconstructed in a 3× 7 cluster by

the energy in a 7× 7 cluster. This variable shows a peak near one for electrons because of the very
small lateral leakage; large tails at lower values of Rη(37) for the jets are expected.

− The lateral width is calculated with a window of 3× 5 cells using the energy weighted sum over all
cells, which depends on the particle impact point inside the cell

 Discriminating variables from the calorimeters (2)
− Use of the first compartment of the EM calorimeter

 The first compartment with its very fine granularity in rapidity can be used to detect
substructures within a shower and thus isolated π0 discriminated against efficiently.
Variables used:

− ΔE = Emax2 - Emin

− ΔEmax2 = Emax2/(1+9(5)× 10-3 ET), with ET the transverse energy of the cluster

− ωtot1~=~√(∑ Ei × (i-imax)2 / ∑ Ei), where i is the strip number and imax the
strip number of the first local maximum.

− Fside = [E(± 3) - E(± 1)]/E(± 1), where E(± n) is the energy in ± n strips
around the strip with highest energy.

− ω3 strips = √{∑ Ei × (i-imax)2 / ∑ Ei}, where i is the number of the strip and imax

the strip number of the most energetic one.

 Discriminating variables from the inner detector
− Track quality cuts

 at least nine precision hits (Pixel+SCT)

 at least two hits in the pixels, one of which being in the b-layer

 a transverse impact parameter A0 < 0.1 cm

− Inner detector/calorimeter spatial matching information
 Δη = |ηstrips -ηID|, where ηstrips is computed in the first sampling of the

electromagnetic calorimeter, where the granularity is very fine, and ηID is the
pseudo-rapidity of the track extrapolated to the calorimeter.

 Δφ = |φmiddle -φID|, where φmiddle is computed in the second compartment of
the electromagnetic calorimeter and φID is the azimuth of the track
extrapolated to the calorimeter.

 Discriminating variables from the inner detector (2)
− Inner Detector/calorimeter energy matching information

 The energy E measured in the electromagnetic calorimeter is compared to the
momentum p measured in the Inner Detector. In the case of an electron, the
momentum should match the energy.

− Transition radiation in the TRT information
 A further reduction of the charged hadron contamination is obtained by rejecting

tracks having a low fraction of high-threshold hits. The discriminating variable used
is the ratio Nhigh/Nall between the number of high threshold hits and the total
number of TRT hits.

Identification efficiences

 IsEM tight

Electrons in the AOD
 The electron collection in the AOD, the keys to use are:

− For the collection: ElectronAODCollection
− For the details (Shower/Trackmatch): egDetailAOD

 ElectronAODcollection
− If a cluster has a matched track, the egamma object is added to the

electron collection

 IsEM flag
− The candidate has to pass a series of cuts based on the shower shape

properties in different compartments of the calorimeter as well as
variables combining ID and Calo informations (see previous slides). If
a cut is not passed, then a bit is set in the IsEM flag

− You can use the bit mask to use only certain parts of the ID criteria

 Predefined set of cuts:
− Loose cuts: electron->isem(ElectronLoose)==0

− Calorimeter cuts only
− Medium cuts: electron->isem(ElectronMedium)==0

− Calorimeter cuts & Track quality cuts (no b-layer)
− Tight cuts: electron->isem(ElectronTight)==0

− All cuts (previous & Track matching & TRT cuts)
− All these cuts can be turned on or off individually using bit masks

enum BitDef {
 // Cluster based egamma
 ClusterEtaRange = 0,
 ClusterHadronicLeakage = 1,
 ClusterMiddleEnergy = 4,
 ClusterMiddleEratio37 = 5,
 ClusterMiddleEratio33 = 6,
 ClusterMiddleWidth = 7,
 ClusterStripsEratio = 8,
 ClusterStripsDeltaEmax2= 9,
 ClusterStripsDeltaE = 10,
 ClusterStripsWtot = 11,
 ClusterStripsFracm = 12,
 ClusterStripsWeta1c = 13,
 ClusterIsolation = 14,
 //Track based egamma
 TrackBlayer = 16,
 TrackPixel = 17,
 TrackSi = 18,
 TrackA0 = 19,
 TrackMatchEta = 20,
 TrackMatchPhi = 21,
 TrackMatchEoverP = 22,
 TrackTRThits = 24,
 TrackTRTratio = 25,
 TrackTRTratio90 = 26
 };

 How to use the IsEM flag?
StoreGateSvc* m_storeGate;
const ElectronContainer* electronColl;
m_storeGate->retrieve(electronColl, "ElectronAODCollection");

ElectronContainer::const_iterator eleItr = electronColl->begin();
ElectronContainer::const_iterator eleEnd = electronColl->end();

for(; eleItr != eleEnd; ++eleItr) {
int isemLoose = (*eleItr)->isem(egammaPID::ElectronLoose);
int isemMedium = (*eleItr)->isem(egammaPID::ElectronMedium);
int isemTight = (*eleItr)->isem(egammaPID::ElectronTight);
if (isemLoose == 0) std::cout << looooooose cut passed " << std::endl;
}

If you want to apply your own set of cuts you can use the bit masks like this:
For example, let’s say you want to use only the E/p cut and the Hadronic Leakage
(of course you wouldn’t wanna do that)

The bit definition on the previous slide tells us:
E/p cut is bit number 22
Hadronic Leakage is bit number 1
So you do:
(*electron)[index]-> isem(0x400002);

WARNING: Bit definition is different in 12.0.X
Closest to loose definition: (isem & 0x7)==0
Closest to medium: (isem & 0x3FF)==0
Closest to tight: isem = 0

 All calorimeter observables used for identification
are accessible in the AOD:
− Shower variables

 egammaParameters::etcone20 : isolation energy (transverse) in a cone with half-opening angle 0.2
 egammaParameters::ethad1 : transverse energy in the first sampling of the hadronic calorimeters behind the cluster
 egammaParameters::e233 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x3

egammaParameters::e237 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 3x7
egammaParameters::e277 : uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 7x7
egammaParameters::weta1

 egammaParameters::weta2
 egammaParameters::f1
 egammaParameters::e2tsts1
 egammaParameters::emins1
 egammaParameters::wtots1
 egammaParameters::fracs1
 egammaParameters::f1core
 egammaParameters::f3core
 egammaParameters::pos7
 egammaParameters::iso
 egammaParameters::widths2
 egammaParameters::zvertex
 egammaParameters::errz
 egammaParameters::etap : pointing eta reconstructed from the cluster (first and second sampling)
 egammaParameters::depth

 EMTrackMatch variables

− egammaParameters::EtaCorrMag
− egammaParameters::EoverP : ratio of the cluster energy and the track momentum
− egammaParameters::deltaEta1 : difference between the cluster eta (first sampling) and the eta of the track

extrapolated to the first sampling
− egammaParameters::deltaEta2 :difference between the cluster eta (second sampling) and the eta of the track

extrapolated to the second sampling
− egammaParameters::deltaPhi2 : difference between the cluster phi (second sampling) and the phi of the track

extrapolated to the second sampling

 How to access EMShower and EMTrackMatch information

const EMShower *shower;
 shower = (*eleItr)->detail<EMShower>("egDetailAOD")
 float etcone = shower->parameter(egammaParameters::etcone20)

const EMTrackMatch *trackmatch;
 trackmatch = (*eleItr)->detail<EMTrackMatch>("egDetailAOD")
 float etcone = shower->parameter(egammaParameters ::EoverP)

 Clusters and Tracks
pointer to CaloCluster : const CaloCluster * egamma::cluster() const
pointer to TrackParticle : const Rec::TrackParticle * egamma::trackParticle() const

(*eleItr)->trackParticle()->phi()
(*eleItr)->trackParticle()->eta()
(*eleItr)->trackParticle()->measuredPerigee()->parameters()[Trk::d0]
(*eleItr)->trackParticle()->measuredPerigee()->localErrorMatrix().error(Trk::d0)
(*eleItr)->trackParticle()->trackSummary()->get(Trk::numberOfBLayerHits)
(*eleItr)->trackParticle()->trackSummary()->get(Trk::numberOfPixelHits)

(*eleItr)->cluster() ->phi()
(*eleItr)->cluster() ->eta()
(*eleItr)->cluster() -> energy()
(*eleItr)->cluster() -> energyBE(0)
(*eleItr)->cluster() -> energyBE(1)
(*eleItr)->cluster() -> energyBE(2)
(*eleItr)->cluster() -> energyBE(3)

