

UK ttH($H \rightarrow bb$) activities

Simon J.H. Dean, UCL 28/09/2007

Event Topology

UK ttH(H \rightarrow bb) activities

Cut-Based Analysis

- Preselection
 - 1 isolated lepton, $p_T^e > 25 \text{GeV}$, $p_T^{\mu} > 20 \text{GeV}$, $|\eta| < 2.5$
 - At least 6 jets, p_T >15GeV, $|\eta|<5$
 - At least 4 tagged as b-jets
- $W \rightarrow Iv$
 - constrain invariant mass of $l\nu$ to W mass, solve for $p_z{}^\nu$
- W→jj
 - Pairs of non b-jets with m_{ij}=m_W±25GeV
- Reconstruction of 2 top quarks
 - Minimise χ^2 with top masses
 - Reconstructed top masses must be within ±20GeV of m_t

Background Shape Study (C. Bernius)

- Broad mass peak
- Background follows signal shape
- Would like better discrimination
- Started by considering ttH vs. ttbb (QCD)

Background Shape Study

Formulated "tight selection" on Higgs b-jets

Shape Comparison

• Normalised to 30 fb⁻¹ ("combined sample")

UK ttH($H \rightarrow bb$) activities

Likelihood Analysis (W. Murray)

- Loop over all jet pairs with
 - both jets from Higgs btagged
 - combined b-tag of all 4
 b-jets good
 - Hadronic W mass 30-150 GeV
 - Hadronic top mass 100-250 GeV
- Construct likelihoods
- Chi2 performs best

Simon J.H. Dean

UK ttH(H \rightarrow bb) activities

28/09/2007

Cut-based vs. likelihood

- Comparison using cone 0.4, cone 0.5 and kT jets
- Better performance seen in likelihood approach
- Not run with all backgrounds yet

UK ttH(H \rightarrow bb) activities

28/09/2007

Fast Simulation Jets

- Fast simulation uses different cone jet finder than accessed by JetRec
- Atlfast currently only supplies the results of cone 0.4 jet finder in AOD output
- Can also run using kT algorithm
 - Done via KtEvent interface, same as JetRec
 - In principle, re-running Atlfast using kT and comparing with full-chain kT jets should give closer agreement

12.0.6 cone jets

Full Fast

- 7000 signal events considered for reasons given on previous slide
- Cone 0.4
- Included for both full and fast in 12.0.6 AOD files
- Noticeably higher number of jets from Atlfast
- Overestimation of jet efficiency at low pT, as seen in other analyses •

Simon J.H. Dean

UK ttH($H \rightarrow bb$) activities

12.0.6 kT jets

- Full chain jets included in 12.0.6 AODs, fast not
- Atlfast run directly from evgen files used in standard production
- R-parameter = 0.4
- Shift to higher pT in fast

Simon J.H. Dean

UK ttH($H \rightarrow bb$) activities

Jet Separation (cone)

- dR between pairs of jets
- Behaviour at low separation in fast simulated jets

Simon J.H. Dean

Jet Separation (kT)

- Closer agreement
- Behaviour at low separation still there, much less pronounced

Simon J.H. Dean

Future Plans

- Pull efforts together for HG5 CSC note contribution
- Continue to explore improvements in event reconstruction