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D The Physics of a complete event
{ generator

Hard process

Matrix element parton-parton
scattering.

Incoming partons from the
proton structure (PDFs)

Essentially arbtrary
separation between this
and...
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D The Physics of a complete event
{ generator

1. Hard process /@
By

2. Parton Shower \eee (ég
Still in the small-coupling
(perturbative) regime
Many final state partons

Works best in collinear
region and/or when there Needs to be a matching

IS a big ratio of scales. between N-leg matrix
element and parton shower.
6
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D The Physics of a complete event
{ generator

1. Hard process

2. Parton shower

3. Hadronization

Turn partons into
physics objects.

Non-perturbative,
tuned to data.
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D The Physics of a complete event
{ generator

1. Hard process

2. Parton shower

3. Hadronization

Turn partons into
physics objects.

Non-perturbative,
tuned to data.

B-decays may initiate new
parton showers
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D The Physics of a complete event
{ generator

1. Hard process

2. Parton shower = '
3. Hadronization \%%

4. Underlying event

i

May contain further hard
processes.

Interactions between
the rest of the protons
(remnants)
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When to use generators

* Estimate expectations from SM and new Physics
— design detectors and triggers
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When to use generators

* Estimate expectations from SM and new Physics
— design detectors and triggers

e Realistic input for detector simulations

— evaluate migration function from “true” particle final
state to detector output

— Invert (“unfold”, “correct for”) this and evaluate
particle-level cross sections

— vary MC parameters to study the model
dependence and other systematics.
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When to use generators

* Estimate expectations from SM and new Physics
— design detectors and triggers

e Realistic input for detector simulations

— evaluate migration function from “true” particle final
state to detector output

— Invert (“unfold”, “correct for”) this and evaluate
particle-level cross sections

— vary MC parameters to study the model
dependence and other systematics.
* Practice analysis, stress-test software and computing
— one of the main uses on ATLAS...
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When to use generators

* |n some cases, Monte Carlo generators actually
provide the best theoretical model with with to compare
the corrected data

— better than (N)NLO in some areas

— allow sophisticated cuts on final state which may
reduce the accuracy of inclusive calculations.
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When NOT to use generators

* Should not be used to attempt to compensate for
Inadequacies of experiment.

— e.qg. if your detector is not sensitive to muons below
10 GeV, you cannot use a generator to “correct” for
this acceptance and get a total inclusive muon cross
section.

— you will simply recover the MC expectation for the
dominant part of the cross section. The detector
adds very little.
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When NOT to use generators

e Should not (in general) be used to attempt to correct
back to unphysical cross sections.
— e.g. parton level jets, Z propagator etc.

— In some cases it is justifiable if the theory
corrections are very well understood (rarely the
case If ever for QCD!)

— often it is useful to aid interpretation of
measurements which have been made at the
particle/physical level. But make the measurement
first, otherwise your “measurement” will have a shelf
life determined by the MC version number.
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Specifically at ATLAS...

* LHC environment will be very busy

— Lots of new phase space for SM processes (especially
W, Z, top, Higgs?, Jets)

— Possible new physics
— QCD everywhere
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Specifically at ATLAS...

* LHC environment will be very busy

— Lots of new phase space for SM processes (especially
W, Z, top, Higgs?, Jets)

— Possible new physics
— QCD everywhere

* One person's signal is is another one's background

— need validated understanding of many processes
even for some simple searches/measurements.
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Specifically at ATLAS...

LHC environment will be very busy

— Lots of new phase space for SM processes (especially
W, Z, top, Higgs?, Jets)

— Possible new physics
— QCD everywhere

* One person's signal is is another one's background

— need validated understanding of many processes
even for some simple searches/measurements.

* Where do we have solid predictions?
* Where can we test these against data?

* What extrapolations or interpolations are involved?
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LHC needs...

* Therefore we need general purpose generators so we
can cross-validate between processes where possible
— eg. QCD radiation, hadronisation...
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LHC needs...

* Therefore we need general purpose generators so we

can cross-validate between processes where possible
— eg. QCD radiation, hadronisation...

* But we need state-of-the art custom simulation for
specific aspects where available
— e.g. NLO QCD; tau decays; multi-object final states
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What we are currently using

* Several parton level Matrix Element generators
* Pythia 6.411
* Herwig 6.510 + Jimmy 4.31

e Sherpa interfaced, in production for some processes
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What we are currently using

* AcerMC: Zbbbar, ttbar, single top,
ttbarbbbar, Wbbar

* Alpgen (+ MLM matching): .
W+jets, Z+jets, QCD multijets R

* (Charbydis: Black holes..
* CompHep: Multijets.. .

¢ HERWIG+JIMMY: QCD multijets, ®
Drell-Yan, SUSY (ISAWIG)...

* Hijing: Heavy lons, Beam-gas..

Pythia: QCD multijets, B-physics,
Higgs production...

Sherpa: W+jets/Z+jets...

WINHAC: W production and
decay

DPEMC: Forward/elastic physics
PHOJET: Needs reviving

Interfaces needed soon...

HERWIG++
Pythia 8

* MadEvent: Z/W+jets...

e MC@NLO: ttbar, Drell-Yan, boson
pair production

Jon Butterworth, UCL
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Add on/decay packages

TAUOLA:

Interfaced to work with Pythia, Herwig and Sherpa,
Native ATLAS effort patches present..
PHOTQOS:

Interfaced to work with Pythia, Herwig and Sherpa,
Also native ATLAS effort present..

EviGen:
Used in B-physics channels.

Jon Butterworth, UCL
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Validation Procedures

Take into account experience and results at the Tevatron, HERA,
LEP etc and/or we try to tune/check the generators using available
Information ourselves.

Compare the results of different MC generators in the
guantities where they should agree (to a certain precision)
either at the generator level or by performing full analysis
studies.

In all cases we of course check the obvious parameters (masses,
resonance shapes, angular (a)symmetries etc.)
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Validation Procedures

Also check stability of the algorithms and their sensitivity to

parameter changes (e.g. cutoff parameters in MLM matching
algorithm etc..).

Beginning to make use of Jetweb/Rivet (www.cedar.ac.uk).
Validation framework and database, experiment independent, also

used by generator authors (MCnet). (www.montecarlonet.org) - see
next session.
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Validation Procedures

Detailed checks when switching versions of the same MC tool.

Nightly “Run Time Tester” (RTT) for regression/change tracking.
Alex Richards (GeneratorsRTT)
Brinick Simmons (overall RTT)

Use LCG Generator Services release where possible, and profit

from their validation (which also uses Rivet, see later).
NB — need to move to GENSER HepMC release.
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ATLAS Organisation

* ATLAS MC Generators physics group (coordinated by
JMB, Borut Kersevan until 30 Sept, Osamu Jinnouchi

from 1 Oct)
— liaise with generator authors on enhancements & fixes

— provide, document & maintain the ATLAS interfaces
— look for gaps in ATLAS capability & try to fill them

— coordinate & support effort within and between physics
groups

— make sure things once validated stay validated
(standardise tests for the most important generators and
channels)
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ATLAS Organisation

* ATLAS generator software maintenance
— Until rel 13, lan Hinchliffe, Georgos Stavropolos
— From rel 14 on Judith Katzy, new DESY + Gottingen
group
— Work closely with coordinators, experts, LCG
* LCG Generator Services (LHC-wide)
— Witek Pokorski (also ATLAS member)

— Distribute and validate generators on the important
platforms

Jon Butterworth, UCL

30



Communication

* Hypernews forum

— https://hypernews.cern.ch/HyperNews/Atlas/get/Generators.html
e Wiki

— https://twiki.cern.ch/twiki/bin/view/Atlas/MonteCarloWorkingGroup
* Meetings

— Next ATLAS MC Generators one 8 Oct
— http://indico.cern.ch/categoryDisplay.py?categld=3I977

* Bug tracking

— https://savannah.cern.ch/bugs/?group=atlasgener&func=browseé&set=open
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Some Software Detalls

* Generators are modified as little as possible

— “symbolic” packages in Externals, which simply contain a
requirements file pointing to the LCG distribution.

® Generators are interfaced to Athena

— Generators area contains interface packages, e.g. Herwig_|,
Pythia_i etc...

— Any urgent bug fixes, before they propagate to an official
LCG distribution, are contained in the interface (overwrite
routines on linking)

— Random numbers service is unified
— STOP statements in code are removed!
— “ATLAS defaults” are hardwired in the code

* (can be changed in joboptions)
Jon Butterworth, UCL 32



Some Software Detalls

* The general purpose fortran generators (Pythia, HERWIG)

are wrapped in C++ interfaces
— same for the add/decay packages (Photo, EvtGen, Jimmy)

* HepMC is used as the standard event format in memory,
and can also be written & read.

* The Matrix-Element level MC generators written in
FORTRAN Iinterfaced through the LesHouches-compliant

event files

— The event samples themselves produced offline and
validated
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Some ATLAS Achievements

lllustrate what is going on in the ATLAS MC activities, some
slides on some efforts at understanding the QCD activity:

Underlying Event tuning: Pythia (two models) and Jimmy
Covering the full QCD phase space: PS and ME matching:
Alpgen + MLM matching validation

Sherpa studies & implementation

Heavy quarks in the initial state: AcerMC solution..

Parton showering: Pythia and Herwig showering models..
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¥ Underlying event tune using CDF data

» All particles from a single
particle collision except the
process of interest.

»  Semi-phenomenological models,
tunable parameters!

s Most important is the cnergy
extrapolation to LHC energies!

T

CDF analysis: QCD dijets I 1§ is defined as th
ysis: Q j _ ,.*mm\. UE is defined as ti

» charged particles: : VL et Iransverse Region

Vi
p,>0.5 GeVand |n|<1 A Jf o
Trmmm ,*
E'fr-d-h:lm“_-_-_”_.’_ﬂ.a -'_'__:.. |

* cone jet finder:

R=+(AnY +(Ag) =07 j
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¥ Underlying event tune using CDF data

L]

‘ Max/Min analysis:Pythia

= The underlying event is measured for
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¥ Underlying event tune to CDF data

¢ JIMMY
— CTEQ 6LO (LHAPDF 10042)

— PTJIM=2.8 x (Vs/1.8 TeV)°? (default has no energy
dependence)

— JMRAD(73) = 1.8 (inverse proton radius squared, default
0.73)

— PRSOF=0.0 (turn off Herwig soft underlying event)
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Lol

& JIMMY4 (PTJIM=28) - Min cone
m JIMMY4] (PTJIM=28) - Max cone

PTJIM energy dependence

PP interactions - s = 630 GeV
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MAX/MIN analysis with Jimmy

L
LI I

With the introduction of

this energy sculiﬂg a gnod @

agreement is again reached!
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UE tunings: Jimmy validation using CDF data @
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UE tunings: Pythia 6.4 validation using CDF dm‘@
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UE tunings: Pythia vs. Jimmy
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ME/PS Matching

* Experience on ATLAS with AlpGen (MLM) and Sherpa (L-

CKKW), mainly for inclusive W+n jet and Z+n jet sampl%s.

= The (experimental) bottom line :
is that both seem to be doing a L |
good job at the TeVatronl :

Sherpa

. distribution of the £ measured by CDF Phys Aev LetL B4 B45-050 2000

ﬂé ARAANRAS I R LR LA RS AR LH AR LA LARAN LA

_._.-
a3 |

T

Alpgen || i
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pe A (HEE E18.1
o 20 0 6O @0 'IIII‘IE[II"I-IDTEI:ILEBE:IJ
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ME/PS Matching

* Differences between Sherpa and AlpGen seen in e.g. In
Z+n jet studies at LHC energy.
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resoeo " P as b — AlpGen-HERW
ild ' |.: il |'.| 13 “— ..'“p‘(.‘l'eu_n TH
|:!E:J:'- mﬂ.ﬁrﬁ i ] pT |_1 ;
i i ‘;L L HD |
;I..- IJJ 0 rI i 14
il H'L'-%h nl: foe
LT e '::Irﬁ.';:-r i e g il
LTS rr:]-\."-‘I{I-l:'l'I
hLos
ki i :'-I: HEES Sk E;L;.al'l: A= .66 i
.:.;_f“; — A FY N — AR TH “.ﬂ-l
Al A 02
e N : in
| g g

i 5 &)
MET(G#V)

Jon Butterworth, UCL 44



i‘ AcerMC heavy quark matching

= I will just flash this, details in
JHEPO9(2006)033
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b=
-

» Pythia introduced a new parton-
shower model with version 6.3+
using the pT in the splitting as
the Sudakov evolution
parameter:

= At ATLAS we decided to use
it as default (the first ones

to do itl)

= The showering activity
increases substantially in the
new modell

Timelike branching:

il =— D
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Impact of different models

» Recently a study of top mass reconstruction using tt~ was done using:
* MC@NLO (Herwig+Jimmy)
*  AcerMC (Pythia - new model)
» Full detector simulation
» The observed discrepancy caused quite a few raised eyebrows..
AcerMC versus MC@NLO

[ T | [l |

miopsaos | =
4'!' L MC@NLG ‘,‘,_,.,_ . AcerMC AP i
= ‘e MC@ENLD 7 = - T
mﬁ'. “| s ]| - ::I
o h N | 1 =
a9 AcerMC " / \ e "
80 I{E_ .|Ji SR | K P el |
- 1% (3]
::;_ rﬂ' + o J';";;‘l::_':mﬁ E"'n'_ﬁ";:'"p_-";-ih;:-mn'-
We do cannot know T -*.}_;ﬁ
offhand which answer I z:uﬁﬁfwﬁu MCGNLD | AcerMC
is correctl <= 682 +04| 1850208
- Distributions not compatible o 06204 | 127207

Jon B * Fit {gaussian + P3) & 4 Gev difference |1




Drell Yan processes

= In order to compare the different showering models a simpler

example was used, motfivated by the TeVatron approach to
showering systematics in Tt~ events.

* The relevant observable for the ISR effect was
observed to be the P, of the dilepfon system

» Measures the recoill of the 7 due to ISR

= The comparison was made between MC@NLO/Herwig and Pythia
Drell-Yan.

Jon B




% The P of the dilepton system

It appears that The new Pythm shawer‘lng
actually gives a harder ISR spectrum - confirms what was already observed
This seems surpri no

+  MC@NLO should in principle

et at least the first ISR
gluﬂn harder than Pythia? C N ME@NLG
* Actually, not entirely true: Pyl -nw |
The M @NI_D extra jef Sl
part is actually LO - same u mj.‘ |
as Py‘l‘hm’s ’T'h, corrections L
ih the Drell-Yan case. . -LL
. T}Te n?sewed diffelrsegce g ELLLL
therefore strictly LSR o
related| | : th
5
B
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P+ of the dilepton system

» The situation becomes quite worrying if one superimposes the Drell-Yan

with the old Pythia showering:

* Seems to agree
quite well with
MC@NLO!

= One would thus
assume that the
new showering is
‘problematic’ ...

s  (Of course there
IS a however..

-

ot

—MC@NLO

01
0.08"
0.06
0.04—

0.02—

Pythia - new
Pythia - old




P+ of the dilepton system

The present 'old’ Pythia defaults are quite close fo &

for UE setftings.
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_:“'PT of the dilepton system
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P+ of the dilepton system

s« The new AW tuning was porfed to the ATLAS Pythia setup.The result is rather
surﬁrisingj namely the AW-tuned ‘old' Pythia showering seems to agree quite well

with the new Pythia showering!
*  This would thus
indicate that the ol —E]
new Pythia model - o
works fine! i —— Pylhia - old, AW lwis
*  What it boils down My
to is that ISR/FSR -
tuning is of essencel =l
» These results are of e
course very preliminary e
studies, need work! i
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Summary

* |ots of work done within ATLAS to make use of the
tools provided by the Generator authors.

* Benefiting now from GENSER, hope to move further in
this direction (Sherpa, Herwig++, Pythia8, HepMC...)

* |ots of validation done. Next big task is to systematise
this so we can respond rapidly to data and new
models.

* Some discussion within Artemis of what our priorities
are?

Jon Butterworth, UCL 54



