

"Tutorial" on Generator Usage in ATLAS

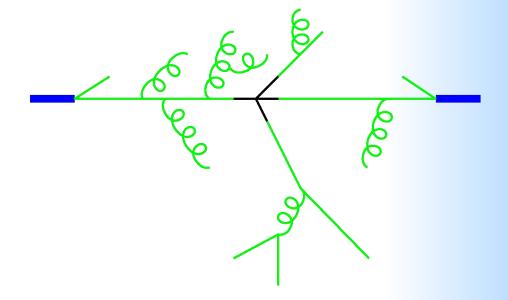
Jonathan Butterworth

University College London

(inc. slides from Borut Kersevan, Mike Seymour)

Artemis 1st Annual Meeting

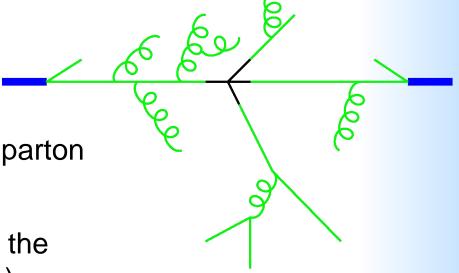
Chalkidiki, Thessalonka, 27th Sept 2007



Outline

- Some general features
- Why use generators?
- Generator usage in ATLAS
- Some examples of generator studies in ATLAS

1. Hard process

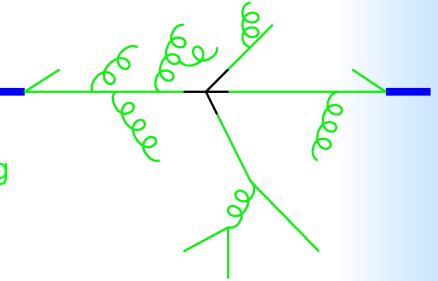


1. Hard process

Matrix element parton-parton scattering.

Incoming partons from the proton structure (PDFs)

Essentially arbtrary separation between this and...

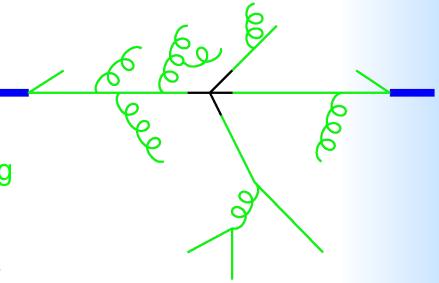


- 1. Hard process
- 2. Parton Shower

Still in the small-coupling (perturbative) regime

Many final state partons

Works best in collinear region and/or when there is a big ratio of scales.

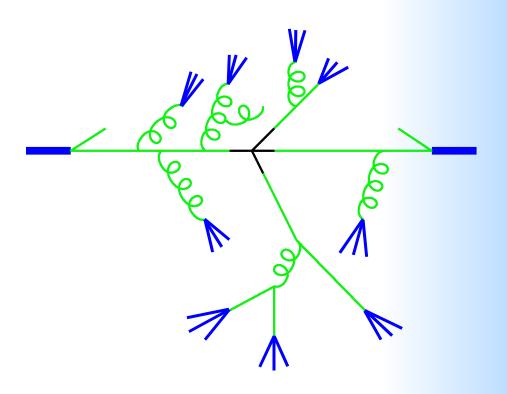


- 1. Hard process
- 2. Parton Shower

Still in the small-coupling (perturbative) regime

Many final state partons

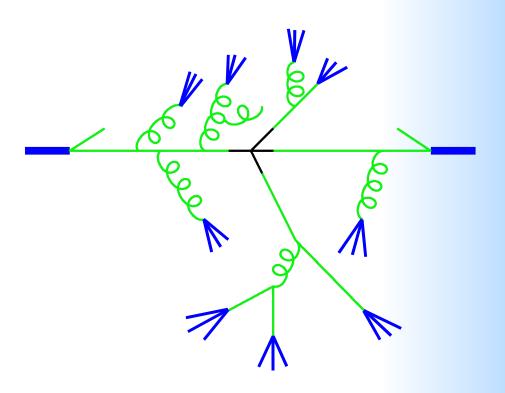
Works best in collinear region and/or when there is a big ratio of scales.


Needs to be a matching between N-leg matrix element and parton shower.

- 1. Hard process
- 2. Parton shower
- 3. Hadronization

Turn partons into physics objects.

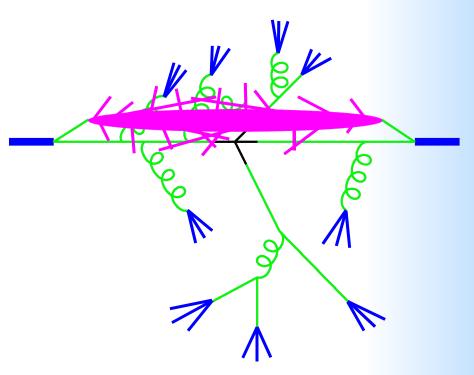
Non-perturbative, tuned to data.



- 1. Hard process
- 2. Parton shower
- 3. Hadronization

Turn partons into physics objects.

Non-perturbative, tuned to data.



B-decays may initiate new parton showers

- 1. Hard process
- 2. Parton shower
- 3. Hadronization
- 4. Underlying event

Interactions between the rest of the protons (remnants)

May contain further hard processes.

- Estimate expectations from SM and new Physics
 - design detectors and triggers

- Estimate expectations from SM and new Physics
 - design detectors and triggers
- Realistic input for detector simulations
 - evaluate migration function from "true" particle final state to detector output
 - invert ("unfold", "correct for") this and evaluate particle-level cross sections
 - vary MC parameters to study the model dependence and other systematics.

- Estimate expectations from SM and new Physics
 - design detectors and triggers
- Realistic input for detector simulations
 - evaluate migration function from "true" particle final state to detector output
 - invert ("unfold", "correct for") this and evaluate particle-level cross sections
 - vary MC parameters to study the model dependence and other systematics.
- Practice analysis, stress-test software and computing

one of the main uses on ATLAS...

- In some cases, Monte Carlo generators actually provide the best theoretical model with with to compare the corrected data
 - better than (N)NLO in some areas
 - allow sophisticated cuts on final state which may reduce the accuracy of inclusive calculations.

- Should not be used to attempt to compensate for inadequacies of experiment.
 - e.g. if your detector is not sensitive to muons below 10 GeV, you cannot use a generator to "correct" for this acceptance and get a total inclusive muon cross section.
 - you will simply recover the MC expectation for the dominant part of the cross section. The detector adds very little.

- Should not (in general) be used to attempt to correct back to unphysical cross sections.
 - e.g. parton level jets, Z propagator etc.
 - in some cases it is justifiable if the theory corrections are very well understood (rarely the case if ever for QCD!)
 - often it is useful to aid interpretation of measurements which have been made at the particle/physical level. But make the measurement first, otherwise your "measurement" will have a shelf life determined by the MC version number.

- LHC environment will be very busy
 - Lots of new phase space for SM processes (especially W, Z, top, Higgs?, Jets)
 - Possible new physics
 - QCD everywhere

- LHC environment will be very busy
 - Lots of new phase space for SM processes (especially W, Z, top, Higgs?, Jets)
 - Possible new physics
 - QCD everywhere
- One person's signal is is another one's background
 - need validated understanding of many processes even for some simple searches/measurements.

- LHC environment will be very busy
 - Lots of new phase space for SM processes (especially W, Z, top, Higgs?, Jets)
 - Possible new physics
 - QCD everywhere
- One person's signal is is another one's background
 - need validated understanding of many processes even for some simple searches/measurements.
- Where do we have solid predictions?

- LHC environment will be very busy
 - Lots of new phase space for SM processes (especially W, Z, top, Higgs?, Jets)
 - Possible new physics
 - QCD everywhere
- One person's signal is is another one's background
 - need validated understanding of many processes even for some simple searches/measurements.
- Where do we have solid predictions?
- Where can we test these against data?

- LHC environment will be very busy
 - Lots of new phase space for SM processes (especially W, Z, top, Higgs?, Jets)
 - Possible new physics
 - QCD everywhere
- One person's signal is is another one's background
 - need validated understanding of many processes even for some simple searches/measurements.
- Where do we have solid predictions?
- Where can we test these against data?
- What extrapolations or interpolations are involved?

LHC needs...

- Therefore we need general purpose generators so we can cross-validate between processes where possible
 - eg. QCD radiation, hadronisation...

LHC needs...

- Therefore we need general purpose generators so we can cross-validate between processes where possible
 - eg. QCD radiation, hadronisation...
- But we need state-of-the art custom simulation for specific aspects where available
 - e.g. NLO QCD; tau decays; multi-object final states

What we are currently using

- Several parton level Matrix Element generators
- Pythia 6.411
- Herwig 6.510 + Jimmy 4.31
- Sherpa interfaced, in production for some processes

What we are currently using

- AcerMC: Zbbbar, ttbar, single top, ttbarbbbar, Wbbar
- Alpgen (+ MLM matching):
 W+jets, Z+jets, QCD multijets
- Charbydis: Black holes...
- CompHep: Multijets...
- HERWIG+JIMMY: QCD multijets,
 Drell-Yan, SUSY (ISAWIG)...
- Hijing: Heavy Ions, Beam-gas...
- MadEvent: Z/W+jets...
- MC@NLO: ttbar, Drell-Yan, boson pair production

- Pythia: QCD multijets, B-physics, Higgs production...
- Sherpa: W+jets/Z+jets...
- WINHAC: W production and decay
- DPEMC: Forward/elastic physics
- PHOJET: Needs reviving

Interfaces needed soon...

HERWIG++

Pythia 8

•

Add on/decay packages

TAUOLA:

Interfaced to work with Pythia, Herwig and Sherpa, Native ATLAS effort patches present..

PHOTOS:

Interfaced to work with Pythia, Herwig and Sherpa, Also native ATLAS effort present..

EvtGen:

Used in B-physics channels.

Validation Procedures

Take into account experience and results at the Tevatron, HERA, LEP etc and/or we try to tune/check the generators using available information ourselves.

Compare the results of different MC generators in the quantities where they should agree (to a certain precision) either at the generator level or by performing full analysis studies.

In all cases we of course check the obvious parameters (masses, resonance shapes, angular (a)symmetries etc.)

Validation Procedures

Also check stability of the algorithms and their sensitivity to parameter changes (e.g. cutoff parameters in MLM matching algorithm etc..).

Beginning to make use of Jetweb/Rivet (www.cedar.ac.uk). Validation framework and database, experiment independent, also used by generator authors (MCnet). (www.montecarlonet.org) - see next session.

Validation Procedures

Detailed checks when switching versions of the same MC tool.

Nightly "Run Time Tester" (RTT) for regression/change tracking.

Alex Richards (GeneratorsRTT)

Brinick Simmons (overall RTT)

Use LCG Generator Services release where possible, and profit from their validation (which also uses Rivet, see later).

NB – need to move to GENSER HepMC release.

ATLAS Organisation

- ATLAS MC Generators physics group (coordinated by JMB, Borut Kersevan until 30 Sept, Osamu Jinnouchi from 1 Oct)
 - liaise with generator authors on enhancements & fixes
 - provide, document & maintain the ATLAS interfaces
 - look for gaps in ATLAS capability & try to fill them
 - coordinate & support effort within and between physics groups
 - make sure things once validated stay validated (standardise tests for the most important generators and channels)

ATLAS Organisation

- ATLAS generator software maintenance
 - Until rel 13, Ian Hinchliffe, Georgos Stavropolos
 - From rel 14 on Judith Katzy, new DESY + Gottingen group
 - Work closely with coordinators, experts, LCG
- LCG Generator Services (LHC-wide)
 - Witek Pokorski (also ATLAS member)
 - Distribute and validate generators on the important platforms

Communication

Hypernews forum

https://hypernews.cern.ch/HyperNews/Atlas/get/Generators.html

Wiki

https://twiki.cern.ch/twiki/bin/view/Atlas/MonteCarloWorkingGroup

Meetings

- Next ATLAS MC Generators one 8 Oct
- http://indico.cern.ch/categoryDisplay.py?categId=3I977

Bug tracking

– https://savannah.cern.ch/bugs/?group=atlasgener&func=browse&set=open

Some Software Details

- Generators are modified as little as possible
 - "symbolic" packages in Externals, which simply contain a requirements file pointing to the LCG distribution.
- Generators are interfaced to Athena
 - Generators area contains interface packages, e.g. Herwig_i,
 Pythia_i etc...
 - Any urgent bug fixes, before they propagate to an official LCG distribution, are contained in the interface (overwrite routines on linking)
 - Random numbers service is unified
 - STOP statements in code are removed!
 - "ATLAS defaults" are hardwired in the code
 - (can be changed in joboptions)

Some Software Details

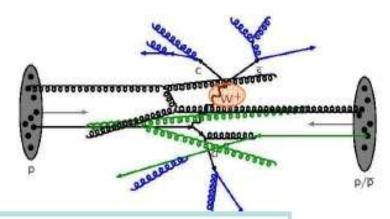
- The general purpose fortran generators (Pythia, HERWIG) are wrapped in C++ interfaces
 - same for the add/decay packages (Photo, EvtGen, Jimmy)
- HepMC is used as the standard event format in memory, and can also be written & read.
- The Matrix-Element level MC generators written in FORTRAN interfaced through the LesHouches-compliant event files
 - The event samples themselves produced offline and validated

Some ATLAS Achievements

Illustrate what is going on in the ATLAS MC activities, some slides on some efforts at understanding the QCD activity:

Underlying Event tuning: Pythia (two models) and Jimmy

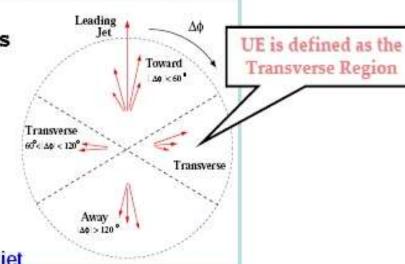
Covering the full QCD phase space: PS and ME matching: Alpgen + MLM matching validation Sherpa studies & implementation


Heavy quarks in the initial state: AcerMC solution..

Parton showering: Pythia and Herwig showering models...

Underlying event tune using CDF data

- All particles from a single particle collision except the process of interest.
- Semi-phenomenological models, tunable parameters!
- Most important is the energy extrapolation to LHC energies!



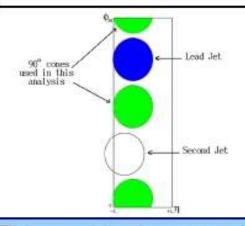
CDF analysis: QCD dijets

- charged particles:
 p_t>0.5 GeV and |η|<1
- cone jet finder:

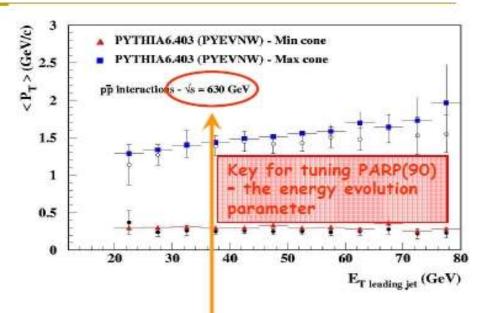
$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.7$$

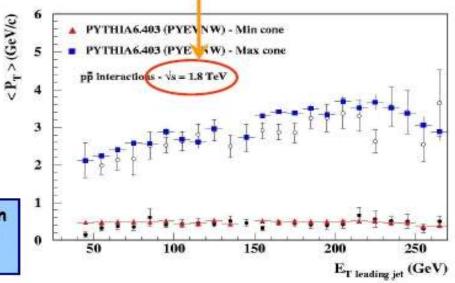
 $\Delta \phi = \phi - \phi_{ijet}$

The underlying event in Hard Interactions at the Tevatron pubar collider, CDF Collaboration, PRD 70, 072002 (2004).


Underlying event tune using CDF data

Max/Min analysis:Pythia


 The underlying event is measured for jet events at two different colliding energies: 630 GeV and 1800 GeV.


Two cones in η-φ space are defined:
η=η_{ljet} (same as the leading jet)
φ=φ_{ljet} ± 90°
R=0.7

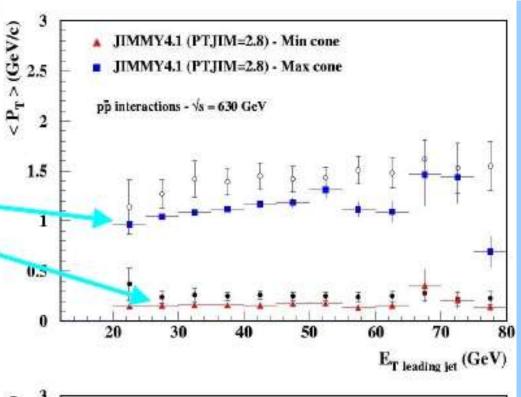
P_T 90max and P_T 90min

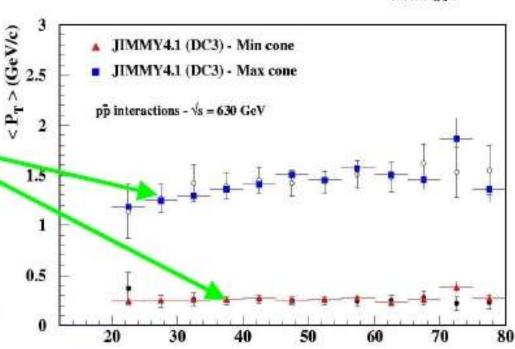
This provides important information on how to model the energy extrapolation in UE models.

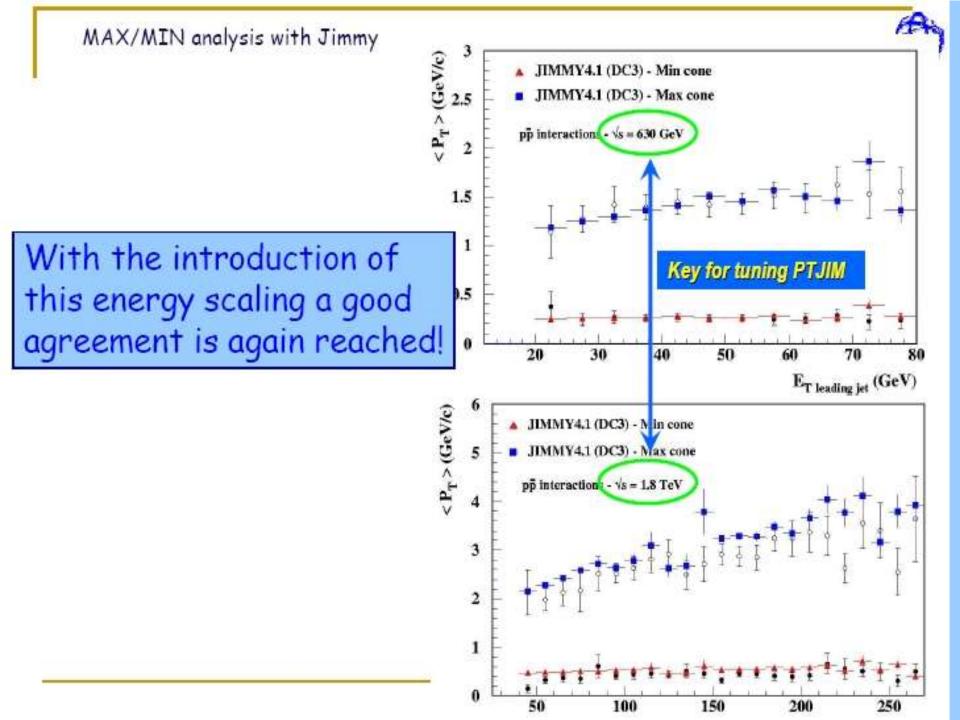
Underlying event tune to CDF data

JIMMY

- CTEQ 6LO (LHAPDF 10042)
- PTJIM=2.8 x (√s / 1.8 TeV)^{0.27} (default has no energy dependence)
- JMRAD(73) = 1.8 (inverse proton radius squared, default 0.73)
- PRSOF=0.0 (turn off Herwig soft underlying event)

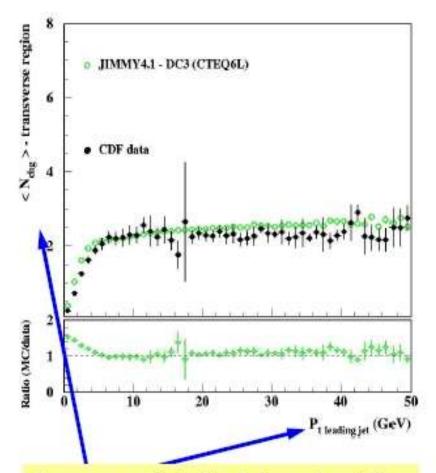

PTJIM energy dependence

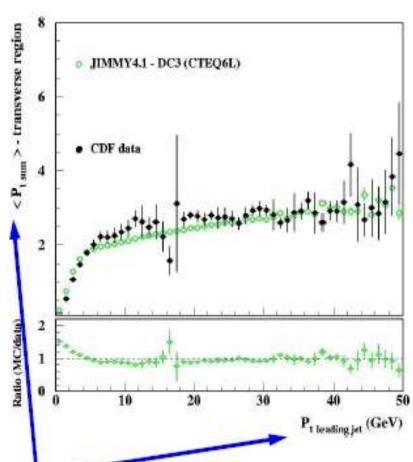

PTJIM=2.8


- same PTJIM obtained from comparisons to 1.8 TeV data!
- This underestimates the data.

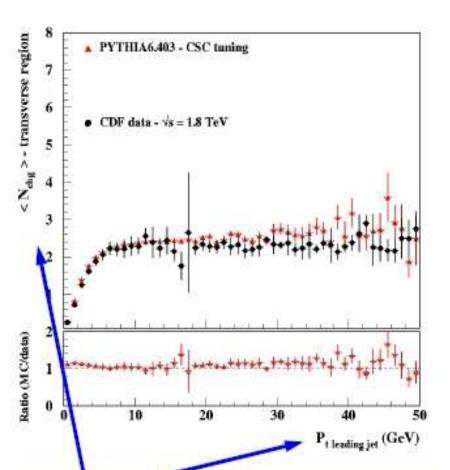
PTJIM=2.1 = $2.8 \times (0.63 / 1.8)^{0.27}$

 introducing energy dependent factor we get a better agreement.

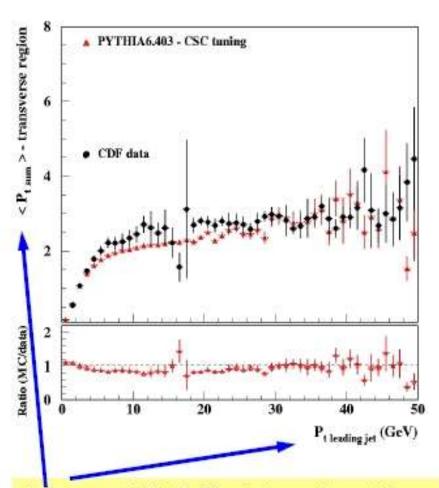




UE tunings: Jimmy validation using CDF data

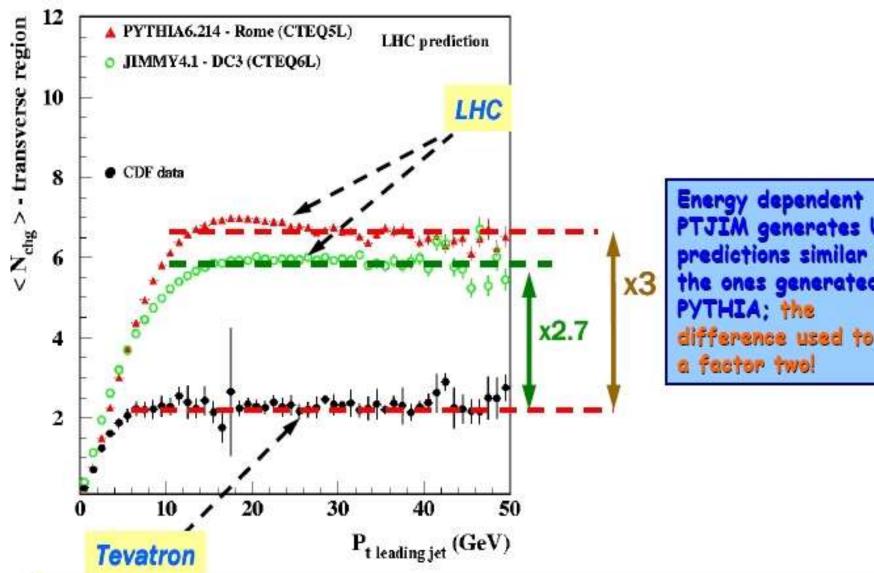


Average multiplicity of charged particles in the underlying event associated to a leading jet with P_t (GeV).



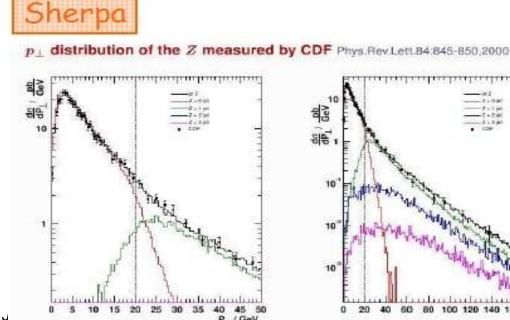
Average p_T^{sum} (GeV) of charged particles in the underlying event associated to a leading jet with P_t^{ljet} (GeV).

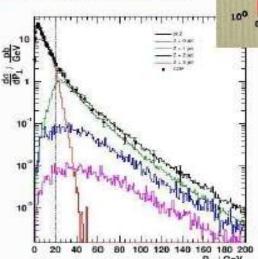
UE tunings: Pythia 6.4 validation using CDF date

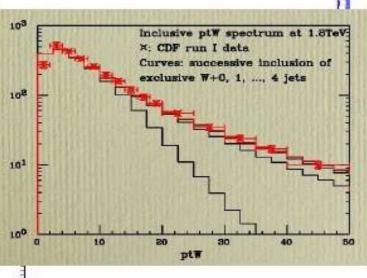

Average multiplicity of charged particles in the underlying event associated to a leading jet with P_t^{ljet} (GeV).

Average p_T^{sum} (GeV) of charged particles in the underlying event associated to a leading jet with P_t^{ljet} (GeV).

UE tunings: Pythia vs. Jimmy

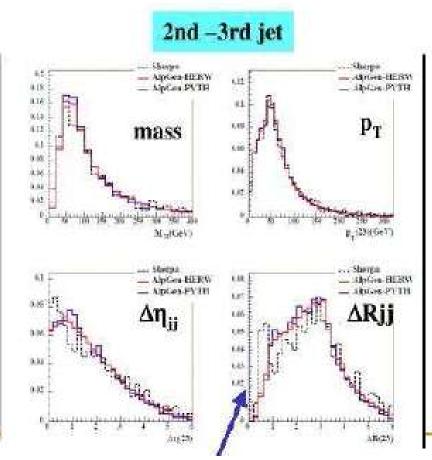


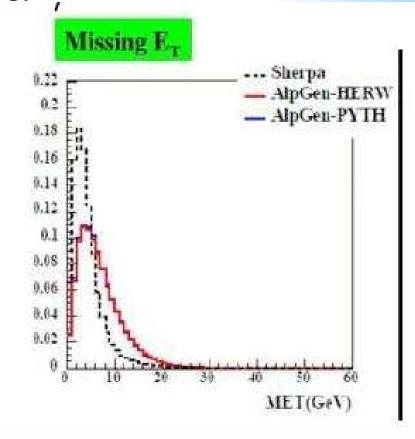

PTJIM generates UE predictions similar to the ones generated by difference used to be


ME/PS Matching

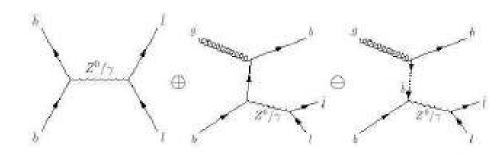
Experience on ATLAS with AlpGen (MLM) and Sherpa (L-CKKW), mainly for inclusive W+n jet and Z+n jet samples.

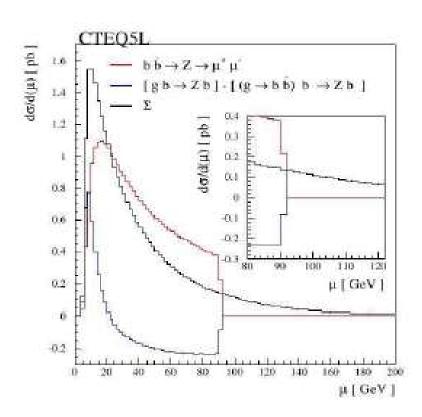
The (experimental) bottom line is that both seem to be doing a good job at the TeVatron!

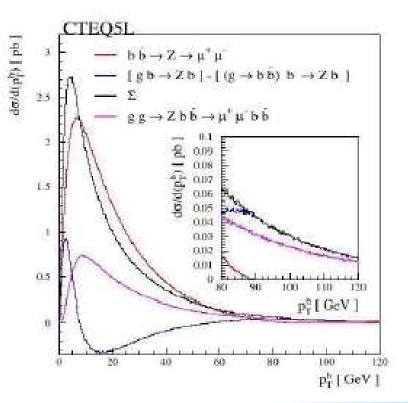




ME/PS Matching

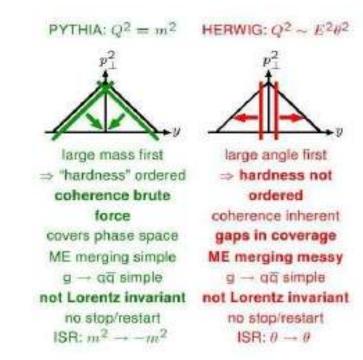

 Differences between Sherpa and AlpGen seen in e.g. in Z+n jet studies at LHC energy.

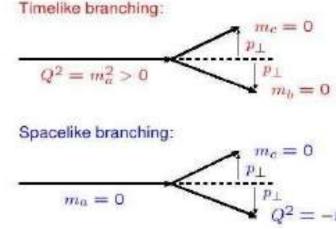


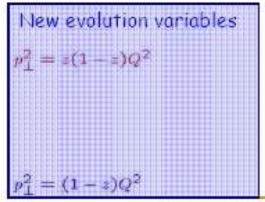


AcerMC heavy quark matching

I will just flash this, details in JHEP09(2006)033

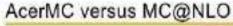


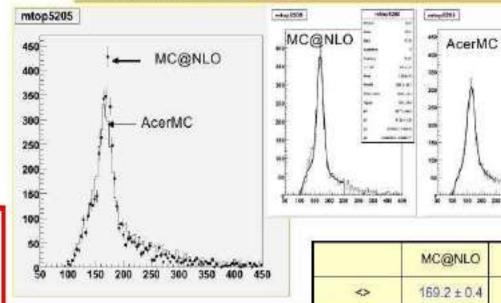




Parton showering: Pythia and Herwig

- Pythia introduced a new partonshower model with version 6.3+, using the pT in the splitting as the Sudakov evolution parameter:
 - At ATLAS we decided to use it as default (the first ones to do it!)
 - The showering activity increases substantially in the new model!





Impact of different models

- Recently a study of top mass reconstruction using tt~ was done using:
 - MC@NLO (Herwig+Jimmy)
 - AcerMC (Pythia new model)
 - Full detector simulation
 - The observed discrepancy caused quite a few raised eyebrows...

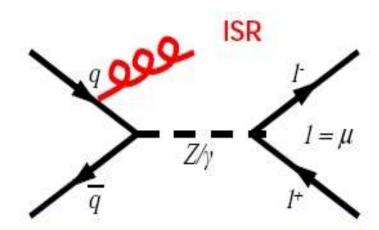
AcerMC

165 0 ± 0 6

 12.7 ± 0.7

 10.5 ± 0.4

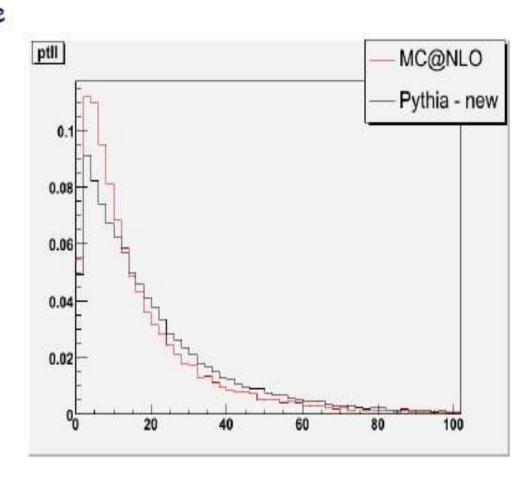
6


We do cannot know offhand which answer is correct!

- · Distributions not compatible
- · Fit (gaussian + P3) → 4 GeV difference !!

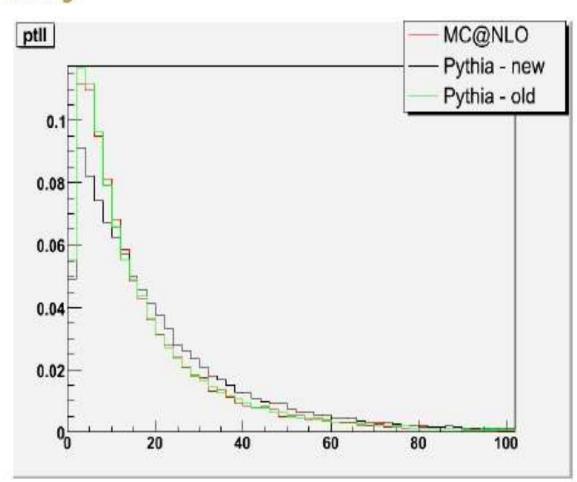
Drell Yan processes

- In order to compare the different showering models a simpler example was used, motivated by the TeVatron approach to showering systematics in tt~ events.
 - The relevant observable for the ISR effect was observed to be the P_{\top} of the dilepton system
 - Measures the recoil of the Z due to ISR
- The comparison was made between MC@NLO/Herwig and Pythia Drell-Yan.



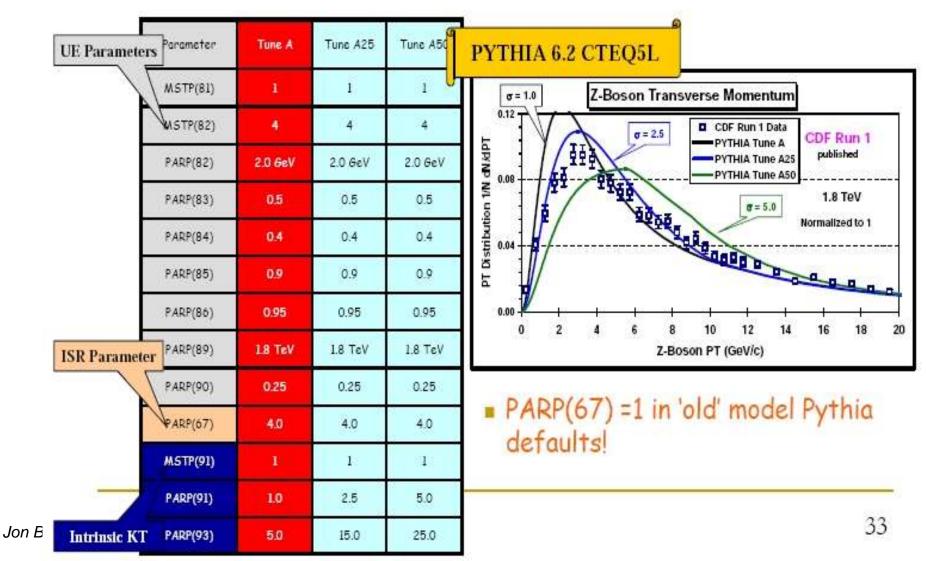
The PT of the dilepton system

- It appears that the new Pythia showering actually gives a harder ISR spectrum - confirms what was already observed This seems surprising:
 - MC@NLO should in principle get at least the first ISR gluon harder than Pythia?
 - Actually, not entirely true: The MC@NLO 'extra jet' part is actually LO - same as Pythia's ME corrections in the Drell-Yan case.
 - The observed difference therefore strictly ISR related!

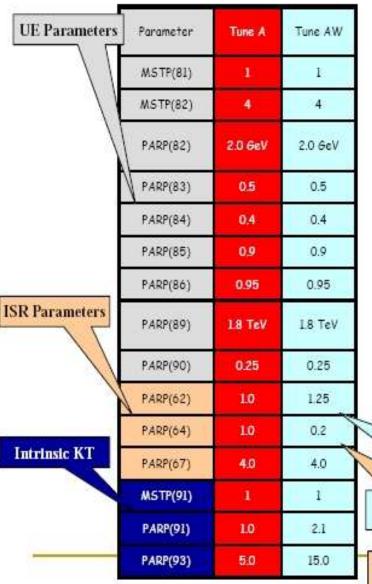


P_T of the dilepton system

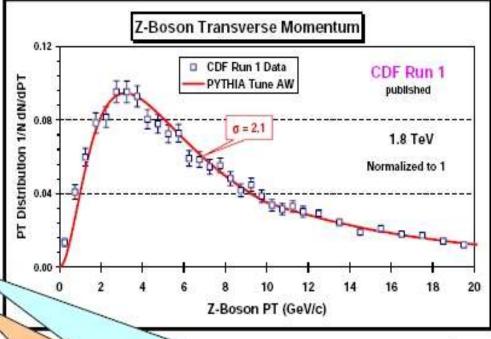
- The situation becomes quite worrying if one superimposes the Drell-Yan with the old Pythia showering:
 - Seems to agree quite well with MC@NLO!
 - One would thus assume that the new showering is 'problematic' ...
 - Of course there is a however..



PT of the dilepton system



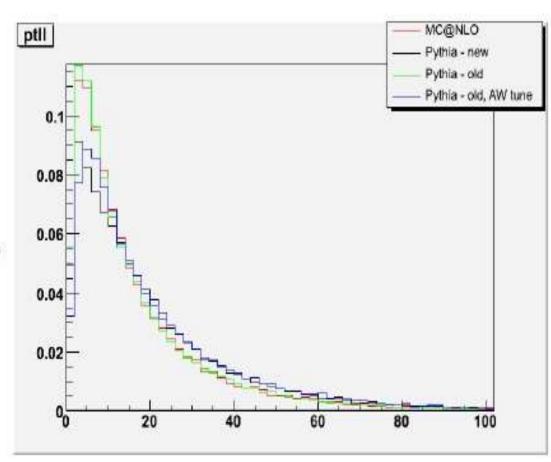
 The present 'old' Pythia defaults are quite close to Rick Field's 'tune A' for UE settings.



PT of the dilepton system

 However the R. Fields AW-tune dods a much better job!

Effective Q cut-off, below which space-like showers are not evolved.


The $Q^2 = k_T^2$ in α_s for space-like showers is scaled by PARP(64)!

PT of the dilepton system

- The new AW tuning was ported to the ATLAS Pythia setup. The result is rather surprising, namely the AW-tuned 'old' Pythia showering seems to agree quite well with the new Pythia showering!
 - This would thus indicate that the new Pythia model works fine!
 - What it boils down to is that ISR/FSR tuning is of essence!
 - These results are of course very preliminary studies, need work!

Summary

- Lots of work done within ATLAS to make use of the tools provided by the Generator authors.
- Benefiting now from GENSER, hope to move further in this direction (Sherpa, Herwig++, Pythia8, HepMC...)
- Lots of validation done. Next big task is to systematise this so we can respond rapidly to data and new models.
- Some discussion within Artemis of what our priorities are?